What works in conjunction with a Secure Sockets Layer SSL to ensure that data is transported safely?

  • Home
  • Community
  • Ask a Question
  • Write a Blog Post
  • Login / Sign-up

    Search Questions and Answers

    What works in conjunction with a Secure Sockets Layer SSL to ensure that data is transported safely?

    0

    Former Member

    Jun 02, 2009 at 08:27 AM

    42 Views

    Hi All,

    If use HTTPS to send data out of XI does it mean that the data is encrypted when it is sent out from xi to the third party system?

    Regards,

    Bharat

    Internet Engineering Task Force (IETF)                         A. Freier
    Request for Comments: 6101                                    P. Karlton
    Category: Historic                               Netscape Communications
    ISSN: 2070-1721                                                P. Kocher
                                                      Independent Consultant
                                                                 August 2011
    
              The Secure Sockets Layer (SSL) Protocol Version 3.0
    
    Abstract
    
       This document is published as a historical record of the SSL 3.0
       protocol.  The original Abstract follows.
    
       This document specifies version 3.0 of the Secure Sockets Layer (SSL
       3.0) protocol, a security protocol that provides communications
       privacy over the Internet.  The protocol allows client/server
       applications to communicate in a way that is designed to prevent
       eavesdropping, tampering, or message forgery.
    
    Foreword
    
       Although the SSL 3.0 protocol is a widely implemented protocol, a
       pioneer in secure communications protocols, and the basis for
       Transport Layer Security (TLS), it was never formally published by
       the IETF, except in several expired Internet-Drafts.  This allowed no
       easy referencing to the protocol.  We believe a stable reference to
       the original document should exist and for that reason, this document
       describes what is known as the last published version of the SSL 3.0
       protocol, that is, the November 18, 1996, version of the protocol.
    
       There were no changes to the original document other than trivial
       editorial changes and the addition of a "Security Considerations"
       section.  However, portions of the original document that no longer
       apply were not included.  Such as the "Patent Statement" section, the
       "Reserved Ports Assignment" section, and the cipher-suite registrator
       note in the "The CipherSuite" section.  The "US export rules"
       discussed in the document do not apply today but are kept intact to
       provide context for decisions taken in protocol design.  The "Goals
       of This Document" section indicates the goals for adopters of SSL
       3.0, not goals of the IETF.
    
       The authors and editors were retained as in the original document.
       The editor of this document is Nikos Mavrogiannopoulos
       ().  The editor would like to
       thank Dan Harkins, Linda Dunbar, Sean Turner, and Geoffrey Keating
       for reviewing this document and providing helpful comments.
    
    Freier, et al.                  Historic                        [Page 1]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    Status of This Memo
    
       This document is not an Internet Standards Track specification; it is
       published for the historical record.
    
       This document defines a Historic Document for the Internet community.
       This document is a product of the Internet Engineering Task Force
       (IETF).  It represents the consensus of the IETF community.  It has
       received public review and has been approved for publication by the
       Internet Engineering Steering Group (IESG).  Not all documents
       approved by the IESG are a candidate for any level of Internet
       Standard; see Section 2 of RFC 5741.
    
       Information about the current status of this document, any errata,
       and how to provide feedback on it may be obtained at
       http://www.rfc-editor.org/info/rfc6101.
    
    Copyright Notice
    
       Copyright (c) 2011 IETF Trust and the persons identified as the
       document authors.  All rights reserved.
    
       This document is subject to BCP 78 and the IETF Trust's Legal
       Provisions Relating to IETF Documents
       (http://trustee.ietf.org/license-info) in effect on the date of
       publication of this document.  Please review these documents
       carefully, as they describe your rights and restrictions with respect
       to this document.  Code Components extracted from this document must
       include Simplified BSD License text as described in Section 4.e of
       the Trust Legal Provisions and are provided without warranty as
       described in the Simplified BSD License.
    
       This document may contain material from IETF Documents or IETF
       Contributions published or made publicly available before November
       10, 2008.  The person(s) controlling the copyright in some of this
       material may not have granted the IETF Trust the right to allow
       modifications of such material outside the IETF Standards Process.
       Without obtaining an adequate license from the person(s) controlling
       the copyright in such materials, this document may not be modified
       outside the IETF Standards Process, and derivative works of it may
       not be created outside the IETF Standards Process, except to format
       it for publication as an RFC or to translate it into languages other
       than English.
    
    Freier, et al.                  Historic                        [Page 2]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    Table of Contents
    
       1. Introduction ....................................................5
       2. Goals ...........................................................5
       3. Goals of This Document ..........................................6
       4. Presentation Language ...........................................6
          4.1. Basic Block Size ...........................................7
          4.2. Miscellaneous ..............................................7
          4.3. Vectors ....................................................7
          4.4. Numbers ....................................................8
          4.5. Enumerateds ................................................8
          4.6. Constructed Types ..........................................9
               4.6.1. Variants ...........................................10
          4.7. Cryptographic Attributes ..................................11
          4.8. Constants .................................................12
       5. SSL Protocol ...................................................12
          5.1. Session and Connection States .............................12
          5.2. Record Layer ..............................................14
               5.2.1. Fragmentation ......................................14
               5.2.2. Record Compression and Decompression ...............15
               5.2.3. Record Payload Protection and the CipherSpec .......16
          5.3. Change Cipher Spec Protocol ...............................18
          5.4. Alert Protocol ............................................18
               5.4.1. Closure Alerts .....................................19
               5.4.2. Error Alerts .......................................20
          5.5. Handshake Protocol Overview ...............................21
          5.6. Handshake Protocol ........................................23
               5.6.1. Hello messages .....................................24
               5.6.2. Server Certificate .................................28
               5.6.3. Server Key Exchange Message ........................28
               5.6.4. Certificate Request ................................30
               5.6.5. Server Hello Done ..................................31
               5.6.6. Client Certificate .................................31
               5.6.7. Client Key Exchange Message ........................31
               5.6.8. Certificate Verify .................................34
               5.6.9. Finished ...........................................35
          5.7. Application Data Protocol .................................36
       6. Cryptographic Computations .....................................36
          6.1. Asymmetric Cryptographic Computations .....................36
               6.1.1. RSA ................................................36
               6.1.2. Diffie-Hellman .....................................37
               6.1.3. FORTEZZA ...........................................37
          6.2. Symmetric Cryptographic Calculations and the CipherSpec ...37
               6.2.1. The Master Secret ..................................37
               6.2.2. Converting the Master Secret into Keys and
                      MAC Secrets ........................................37
       7. Security Considerations ........................................39
       8. Informative References .........................................40
    
    Freier, et al.                  Historic                        [Page 3]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Appendix A. Protocol Constant Values ..............................42
         A.1. Record Layer ...............................................42
         A.2. Change Cipher Specs Message ................................43
         A.3. Alert Messages .............................................43
         A.4. Handshake Protocol .........................................44
           A.4.1. Hello Messages .........................................44
           A.4.2. Server Authentication and Key Exchange Messages ........45
         A.5. Client Authentication and Key Exchange Messages ............46
           A.5.1. Handshake Finalization Message .........................47
         A.6. The CipherSuite ............................................47
         A.7. The CipherSpec .............................................49
       Appendix B. Glossary ..............................................50
       Appendix C. CipherSuite Definitions ...............................53
       Appendix D. Implementation Notes ..................................56
         D.1. Temporary RSA Keys .........................................56
         D.2. Random Number Generation and Seeding .......................56
         D.3. Certificates and Authentication ............................57
         D.4. CipherSuites ...............................................57
         D.5. FORTEZZA ...................................................57
           D.5.1. Notes on Use of FORTEZZA Hardware ......................57
           D.5.2. FORTEZZA Cipher Suites .................................58
           D.5.3. FORTEZZA Session Resumption ............................58
       Appendix E. Version 2.0 Backward Compatibility ....................59
         E.1. Version 2 Client Hello .....................................59
         E.2. Avoiding Man-in-the-Middle Version Rollback ..............61
       Appendix F. Security Analysis .....................................61
         F.1. Handshake Protocol .........................................61
           F.1.1. Authentication and Key Exchange ........................61
           F.1.2. Version Rollback Attacks ...............................64
           F.1.3. Detecting Attacks against the Handshake Protocol .......64
           F.1.4. Resuming Sessions ......................................65
           F.1.5. MD5 and SHA ............................................65
         F.2. Protecting Application Data ................................65
         F.3. Final Notes ................................................66
       Appendix G. Acknowledgements ......................................66
         G.1. Other Contributors .........................................66
         G.2. Early Reviewers ............................................67
    
    Freier, et al.                  Historic                        [Page 4]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    1.  Introduction
    
       The primary goal of the SSL protocol is to provide privacy and
       reliability between two communicating applications.  The protocol is
       composed of two layers.  At the lowest level, layered on top of some
       reliable transport protocol (e.g., TCP [RFC0793]), is the SSL record
       protocol.  The SSL record protocol is used for encapsulation of
       various higher level protocols.  One such encapsulated protocol, the
       SSL handshake protocol, allows the server and client to authenticate
       each other and to negotiate an encryption algorithm and cryptographic
       keys before the application protocol transmits or receives its first
       byte of data.  One advantage of SSL is that it is application
       protocol independent.  A higher level protocol can layer on top of
       the SSL protocol transparently.  The SSL protocol provides connection
       security that has three basic properties:
    
       o  The connection is private.  Encryption is used after an initial
          handshake to define a secret key.  Symmetric cryptography is used
          for data encryption (e.g., DES [DES], 3DES [3DES], RC4 [SCH]).
    
       o  The peer's identity can be authenticated using asymmetric, or
          public key, cryptography (e.g., RSA [RSA], DSS [DSS]).
    
       o  The connection is reliable.  Message transport includes a message
          integrity check using a keyed Message Authentication Code (MAC)
          [RFC2104].  Secure hash functions (e.g., SHA, MD5) are used for
          MAC computations.
    
    2.  Goals
    
       The goals of SSL protocol version 3.0, in order of their priority,
       are:
    
       1.  Cryptographic security
    
              SSL should be used to establish a secure connection between
              two parties.
    
       2.  Interoperability
    
              Independent programmers should be able to develop applications
              utilizing SSL 3.0 that will then be able to successfully
              exchange cryptographic parameters without knowledge of one
              another's code.
    
    Freier, et al.                  Historic                        [Page 5]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
              Note: It is not the case that all instances of SSL (even in
              the same application domain) will be able to successfully
              connect.  For instance, if the server supports a particular
              hardware token, and the client does not have access to such a
              token, then the connection will not succeed.
    
       3.  Extensibility
    
              SSL seeks to provide a framework into which new public key and
              bulk encryption methods can be incorporated as necessary.
              This will also accomplish two sub-goals: to prevent the need
              to create a new protocol (and risking the introduction of
              possible new weaknesses) and to avoid the need to implement an
              entire new security library.
    
       4.  Relative efficiency
    
              Cryptographic operations tend to be highly CPU intensive,
              particularly public key operations.  For this reason, the SSL
              protocol has incorporated an optional session caching scheme
              to reduce the number of connections that need to be
              established from scratch.  Additionally, care has been taken
              to reduce network activity.
    
    3.  Goals of This Document
    
       The SSL protocol version 3.0 specification is intended primarily for
       readers who will be implementing the protocol and those doing
       cryptographic analysis of it.  The spec has been written with this in
       mind, and it is intended to reflect the needs of those two groups.
       For that reason, many of the algorithm-dependent data structures and
       rules are included in the body of the text (as opposed to in an
       appendix), providing easier access to them.
    
       This document is not intended to supply any details of service
       definition or interface definition, although it does cover select
       areas of policy as they are required for the maintenance of solid
       security.
    
    4.  Presentation Language
    
       This document deals with the formatting of data in an external
       representation.  The following very basic and somewhat casually
       defined presentation syntax will be used.  The syntax draws from
       several sources in its structure.  Although it resembles the
       programming language "C" in its syntax and External Data
       Representation (XDR) [RFC1832] in both its syntax and intent, it
    
    Freier, et al.                  Historic                        [Page 6]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       would be risky to draw too many parallels.  The purpose of this
       presentation language is to document SSL only, not to have general
       application beyond that particular goal.
    
    4.1.  Basic Block Size
    
       The representation of all data items is explicitly specified.  The
       basic data block size is one byte (i.e., 8 bits).  Multiple byte data
       items are concatenations of bytes, from left to right, from top to
       bottom.  From the byte stream, a multi-byte item (a numeric in the
       example) is formed (using C notation) by:
    
            value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) | ...
            | byte[n-1];
    
       This byte ordering for multi-byte values is the commonplace network
       byte order or big-endian format.
    
    4.2.  Miscellaneous
    
       Comments begin with "/*" and end with "*/".  Optional components are
       denoted by enclosing them in "[[ ]]" double brackets.  Single-byte
       entities containing uninterpreted data are of type opaque.
    
    4.3.  Vectors
    
       A vector (single dimensioned array) is a stream of homogeneous data
       elements.  The size of the vector may be specified at documentation
       time or left unspecified until runtime.  In either case, the length
       declares the number of bytes, not the number of elements, in the
       vector.  The syntax for specifying a new type T' that is a fixed-
       length vector of type T is
    
            T T'[n];
    
       Here, T' occupies n bytes in the data stream, where n is a multiple
       of the size of T.  The length of the vector is not included in the
       encoded stream.
    
       In the following example, Datum is defined to be three consecutive
       bytes that the protocol does not interpret, while Data is three
       consecutive Datum, consuming a total of nine bytes.
    
            opaque Datum[3];      /* three uninterpreted bytes */
            Datum Data[9];        /* 3 consecutive 3 byte vectors */
    
    Freier, et al.                  Historic                        [Page 7]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Variable-length vectors are defined by specifying a subrange of legal
       lengths, inclusively, using the notation <floor..ceiling>.  When
       encoded, the actual length precedes the vector's contents in the byte
       stream.  The length will be in the form of a number consuming as many
       bytes as required to hold the vector's specified maximum (ceiling)
       length.  A variable-length vector with an actual length field of zero
       is referred to as an empty vector.
    
            T T'<floor..ceiling>;
    
       In the following example, mandatory is a vector that must contain
       between 300 and 400 bytes of type opaque.  It can never be empty.
       The actual length field consumes two bytes, a uint16, sufficient to
       represent the value 400 (see Section 4.4).  On the other hand, longer
       can represent up to 800 bytes of data, or 400 uint16 elements, and it
       may be empty.  Its encoding will include a two-byte actual length
       field prepended to the vector.
    
            opaque mandatory<300..400>;
                  /* length field is 2 bytes, cannot be empty */
            uint16 longer<0..800>;
                  /* zero to 400 16-bit unsigned integers */
    
    4.4.  Numbers
    
       The basic numeric data type is an unsigned byte (uint8).  All larger
       numeric data types are formed from fixed-length series of bytes
       concatenated as described in Section 4.1 and are also unsigned.  The
       following numeric types are predefined.
    
            uint8 uint16[2];
            uint8 uint24[3];
            uint8 uint32[4];
            uint8 uint64[8];
    
    4.5.  Enumerateds
    
       An additional sparse data type is available called enum.  A field of
       type enum can only assume the values declared in the definition.
       Each definition is a different type.  Only enumerateds of the same
       type may be assigned or compared.  Every element of an enumerated
       must be assigned a value, as demonstrated in the following example.
       Since the elements of the enumerated are not ordered, they can be
       assigned any unique value, in any order.
    
            enum { e1(v1), e2(v2), ... , en(vn), [[(n)]] } Te;
    
    Freier, et al.                  Historic                        [Page 8]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Enumerateds occupy as much space in the byte stream as would its
       maximal defined ordinal value.  The following definition would cause
       one byte to be used to carry fields of type Color.
    
            enum { red(3), blue(5), white(7) } Color;
    
       Optionally, one may specify a value without its associated tag to
       force the width definition without defining a superfluous element.
       In the following example, Taste will consume two bytes in the data
       stream but can only assume the values 1, 2, or 4.
    
            enum { sweet(1), sour(2), bitter(4), (32000) } Taste;
    
       The names of the elements of an enumeration are scoped within the
       defined type.  In the first example, a fully qualified reference to
       the second element of the enumeration would be Color.blue.  Such
       qualification is not required if the target of the assignment is well
       specified.
    
            Color color = Color.blue;     /* overspecified, legal */
            Color color = blue;           /* correct, type implicit */
    
       For enumerateds that are never converted to external representation,
       the numerical information may be omitted.
    
            enum { low, medium, high } Amount;
    
    4.6.  Constructed Types
    
       Structure types may be constructed from primitive types for
       convenience.  Each specification declares a new, unique type.  The
       syntax for definition is much like that of C.
    
          struct {
              T1 f1;
              T2 f2;
              ...
              Tn fn;
          } [[T]];
    
       The fields within a structure may be qualified using the type's name
       using a syntax much like that available for enumerateds.  For
       example, T.f2 refers to the second field of the previous declaration.
       Structure definitions may be embedded.
    
    Freier, et al.                  Historic                        [Page 9]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    4.6.1.  Variants
    
       Defined structures may have variants based on some knowledge that is
       available within the environment.  The selector must be an enumerated
       type that defines the possible variants the structure defines.  There
       must be a case arm for every element of the enumeration declared in
       the select.  The body of the variant structure may be given a label
       for reference.  The mechanism by which the variant is selected at
       runtime is not prescribed by the presentation language.
    
            struct {
                T1 f1;
                T2 f2;
                 ....
                Tn fn;
                select (E) {
                    case e1: Te1;
                    case e2: Te2;
                        ....
                    case en: Ten;
                } [[fv]];
            } [[Tv]];
    
          For example,
    
            enum { apple, orange } VariantTag;
            struct {
                uint16 number;
                opaque string<0..10>; /* variable length */
            } V1;
    
            struct {
                uint32 number;
                opaque string[10];    /* fixed length */
            } V2;
            struct {
                select (VariantTag) { /* value of selector is implicit */
                    case apple: V1;   /* VariantBody, tag = apple */
                    case orange: V2;  /* VariantBody, tag = orange */
                } variant_body;       /* optional label on variant */
            } VariantRecord;
    
    Freier, et al.                  Historic                       [Page 10]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Variant structures may be qualified (narrowed) by specifying a value
       for the selector prior to the type.  For example, an
    
            orange VariantRecord
    
       is a narrowed type of a VariantRecord containing a variant_body of
       type V2.
    
    4.7.  Cryptographic Attributes
    
       The four cryptographic operations digital signing, stream cipher
       encryption, block cipher encryption, and public key encryption are
       designated digitally-signed, stream-ciphered, block-ciphered, and
       public-key-encrypted, respectively.  A field's cryptographic
       processing is specified by prepending an appropriate key word
       designation before the field's type specification.  Cryptographic
       keys are implied by the current session state (see Section 5.1).
    
       In digital signing, one-way hash functions are used as input for a
       signing algorithm.  In RSA signing, a 36-byte structure of two hashes
       (one SHA and one MD5) is signed (encrypted with the private key).  In
       DSS, the 20 bytes of the SHA hash are run directly through the
       Digital Signature Algorithm with no additional hashing.
    
       In stream cipher encryption, the plaintext is exclusive-ORed with an
       identical amount of output generated from a cryptographically secure
       keyed pseudorandom number generator.
    
       In block cipher encryption, every block of plaintext encrypts to a
       block of ciphertext.  Because it is unlikely that the plaintext
       (whatever data is to be sent) will break neatly into the necessary
       block size (usually 64 bits), it is necessary to pad out the end of
       short blocks with some regular pattern, usually all zeroes.
    
       In public key encryption, one-way functions with secret "trapdoors"
       are used to encrypt the outgoing data.  Data encrypted with the
       public key of a given key pair can only be decrypted with the private
       key, and vice versa.  In the following example:
    
            stream-ciphered struct {
                uint8 field1;
                uint8 field2;
                digitally-signed opaque hash[20];
            } UserType;
    
       The contents of hash are used as input for the signing algorithm,
       then the entire structure is encrypted with a stream cipher.
    
    Freier, et al.                  Historic                       [Page 11]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    4.8.  Constants
    
       Typed constants can be defined for purposes of specification by
       declaring a symbol of the desired type and assigning values to it.
       Under-specified types (opaque, variable-length vectors, and
       structures that contain opaque) cannot be assigned values.  No fields
       of a multi-element structure or vector may be elided.
    
          For example,
            struct {
                uint8 f1;
                uint8 f2;
            } Example1;
    
            Example1 ex1 = {1, 4};/* assigns f1 = 1, f2 = 4 */
    
    5.  SSL Protocol
    
       SSL is a layered protocol.  At each layer, messages may include
       fields for length, description, and content.  SSL takes messages to
       be transmitted, fragments the data into manageable blocks, optionally
       compresses the data, applies a MAC, encrypts, and transmits the
       result.  Received data is decrypted, verified, decompressed, and
       reassembled, then delivered to higher level clients.
    
    5.1.  Session and Connection States
    
       An SSL session is stateful.  It is the responsibility of the SSL
       handshake protocol to coordinate the states of the client and server,
       thereby allowing the protocol state machines of each to operate
       consistently, despite the fact that the state is not exactly
       parallel.  Logically, the state is represented twice, once as the
       current operating state and (during the handshake protocol) again as
       the pending state.  Additionally, separate read and write states are
       maintained.  When the client or server receives a change cipher spec
       message, it copies the pending read state into the current read
       state.  When the client or server sends a change cipher spec message,
       it copies the pending write state into the current write state.  When
       the handshake negotiation is complete, the client and server exchange
       change cipher spec messages (see Section 5.3), and they then
       communicate using the newly agreed-upon cipher spec.
    
       An SSL session may include multiple secure connections; in addition,
       parties may have multiple simultaneous sessions.
    
    Freier, et al.                  Historic                       [Page 12]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       The session state includes the following elements:
    
       session identifier:  An arbitrary byte sequence chosen by the server
          to identify an active or resumable session state.
    
       peer certificate:  X509.v3 [X509] certificate of the peer.  This
          element of the state may be null.
    
       compression method:  The algorithm used to compress data prior to
          encryption.
    
       cipher spec:  Specifies the bulk data encryption algorithm (such as
          null, DES, etc.) and a MAC algorithm (such as MD5 or SHA).  It
          also defines cryptographic attributes such as the hash_size.  (See
          Appendix A.7 for formal definition.)
    
       master secret:  48-byte secret shared between the client and server.
    
       is resumable:  A flag indicating whether the session can be used to
          initiate new connections.
    
       The connection state includes the following elements:
    
       server and client random:  Byte sequences that are chosen by the
          server and client for each connection.
    
       server write MAC secret:  The secret used in MAC operations on data
          written by the server.
    
       client write MAC secret:  The secret used in MAC operations on data
          written by the client.
    
       server write key:  The bulk cipher key for data encrypted by the
          server and decrypted by the client.
    
       client write key:  The bulk cipher key for data encrypted by the
          client and decrypted by the server.
    
       initialization vectors:  When a block cipher in Cipher Block Chaining
          (CBC) mode is used, an initialization vector (IV) is maintained
          for each key.  This field is first initialized by the SSL
          handshake protocol.  Thereafter, the final ciphertext block from
          each record is preserved for use with the following record.
    
    Freier, et al.                  Historic                       [Page 13]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       sequence numbers:  Each party maintains separate sequence numbers for
          transmitted and received messages for each connection.  When a
          party sends or receives a change cipher spec message, the
          appropriate sequence number is set to zero.  Sequence numbers are
          of type uint64 and may not exceed 2^64-1.
    
    5.2.  Record Layer
    
       The SSL record layer receives uninterpreted data from higher layers
       in non-empty blocks of arbitrary size.
    
    5.2.1.  Fragmentation
    
       The record layer fragments information blocks into SSLPlaintext
       records of 2^14 bytes or less.  Client message boundaries are not
       preserved in the record layer (i.e., multiple client messages of the
       same ContentType may be coalesced into a single SSLPlaintext record).
    
            struct {
                uint8 major, minor;
            } ProtocolVersion;
    
            enum {
                change_cipher_spec(20), alert(21), handshake(22),
                application_data(23), (255)
            } ContentType;
    
            struct {
                ContentType type;
                ProtocolVersion version;
                uint16 length;
                opaque fragment[SSLPlaintext.length];
            } SSLPlaintext;
    
       type:  The higher level protocol used to process the enclosed
          fragment.
    
       version:  The version of protocol being employed.  This document
          describes SSL version 3.0 (see Appendix A.1).
    
       length:  The length (in bytes) of the following
          SSLPlaintext.fragment.  The length should not exceed 2^14.
    
       fragment:  The application data.  This data is transparent and
          treated as an independent block to be dealt with by the higher
          level protocol specified by the type field.
    
    Freier, et al.                  Historic                       [Page 14]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Note: Data of different SSL record layer content types may be
       interleaved.  Application data is generally of lower precedence for
       transmission than other content types.
    
    5.2.2.  Record Compression and Decompression
    
       All records are compressed using the compression algorithm defined in
       the current session state.  There is always an active compression
       algorithm; however, initially it is defined as
       CompressionMethod.null.  The compression algorithm translates an
       SSLPlaintext structure into an SSLCompressed structure.  Compression
       functions erase their state information whenever the CipherSpec is
       replaced.
    
       Note: The CipherSpec is part of the session state described in
       Section 5.1.  References to fields of the CipherSpec are made
       throughout this document using presentation syntax.  A more complete
       description of the CipherSpec is shown in Appendix A.7.
    
       Compression must be lossless and may not increase the content length
       by more than 1024 bytes.  If the decompression function encounters an
       SSLCompressed.fragment that would decompress to a length in excess of
       2^14 bytes, it should issue a fatal decompression_failure alert
       (Section 5.4.2).
    
            struct {
                ContentType type;       /* same as SSLPlaintext.type */
                ProtocolVersion version;/* same as SSLPlaintext.version */
                uint16 length;
                opaque fragment[SSLCompressed.length];
            } SSLCompressed;
    
       length:  The length (in bytes) of the following
          SSLCompressed.fragment.  The length should not exceed 2^14 + 1024.
    
       fragment:  The compressed form of SSLPlaintext.fragment.
    
       Note: A CompressionMethod.null operation is an identity operation; no
       fields are altered (see Appendix A.4.1.)
    
       Implementation note: Decompression functions are responsible for
       ensuring that messages cannot cause internal buffer overflows.
    
    Freier, et al.                  Historic                       [Page 15]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.2.3.  Record Payload Protection and the CipherSpec
    
       All records are protected using the encryption and MAC algorithms
       defined in the current CipherSpec.  There is always an active
       CipherSpec; however, initially it is SSL_NULL_WITH_NULL_NULL, which
       does not provide any security.
    
       Once the handshake is complete, the two parties have shared secrets
       that are used to encrypt records and compute keyed Message
       Authentication Codes (MACs) on their contents.  The techniques used
       to perform the encryption and MAC operations are defined by the
       CipherSpec and constrained by CipherSpec.cipher_type.  The encryption
       and MAC functions translate an SSLCompressed structure into an
       SSLCiphertext.  The decryption functions reverse the process.
       Transmissions also include a sequence number so that missing,
       altered, or extra messages are detectable.
    
            struct {
                ContentType type;
                ProtocolVersion version;
                uint16 length;
                select (CipherSpec.cipher_type) {
                    case stream: GenericStreamCipher;
                    case block: GenericBlockCipher;
                } fragment;
            } SSLCiphertext;
    
       type:  The type field is identical to SSLCompressed.type.
    
       version:  The version field is identical to SSLCompressed.version.
    
       length:  The length (in bytes) of the following
          SSLCiphertext.fragment.  The length may not exceed 2^14 + 2048.
    
       fragment:  The encrypted form of SSLCompressed.fragment, including
          the MAC.
    
    5.2.3.1.  Null or Standard Stream Cipher
    
       Stream ciphers (including BulkCipherAlgorithm.null; see Appendix A.7)
       convert SSLCompressed.fragment structures to and from stream
       SSLCiphertext.fragment structures.
    
            stream-ciphered struct {
                opaque content[SSLCompressed.length];
                opaque MAC[CipherSpec.hash_size];
            } GenericStreamCipher;
    
    Freier, et al.                  Historic                       [Page 16]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       The MAC is generated as:
    
            hash(MAC_write_secret + pad_2 +
                 hash(MAC_write_secret + pad_1 + seq_num +
                      SSLCompressed.type + SSLCompressed.length +
                      SSLCompressed.fragment));
    
       where "+" denotes concatenation.
    
       pad_1:  The character 0x36 repeated 48 times for MD5 or 40 times for
          SHA.
    
       pad_2:  The character 0x5c repeated 48 times for MD5 or 40 times for
          SHA.
    
       seq_num:  The sequence number for this message.
    
       hash:  Hashing algorithm derived from the cipher suite.
    
       Note that the MAC is computed before encryption.  The stream cipher
       encrypts the entire block, including the MAC.  For stream ciphers
       that do not use a synchronization vector (such as RC4), the stream
       cipher state from the end of one record is simply used on the
       subsequent packet.  If the CipherSuite is SSL_NULL_WITH_NULL_NULL,
       encryption consists of the identity operation (i.e., the data is not
       encrypted and the MAC size is zero implying that no MAC is used).
       SSLCiphertext.length is SSLCompressed.length plus
       CipherSpec.hash_size.
    
    5.2.3.2.  CBC Block Cipher
    
       For block ciphers (such as RC2 or DES), the encryption and MAC
       functions convert SSLCompressed.fragment structures to and from block
       SSLCiphertext.fragment structures.
    
            block-ciphered struct {
                opaque content[SSLCompressed.length];
                opaque MAC[CipherSpec.hash_size];
                uint8 padding[GenericBlockCipher.padding_length];
                uint8 padding_length;
            } GenericBlockCipher;
    
       The MAC is generated as described in Section 5.2.3.1.
    
       padding:  Padding that is added to force the length of the plaintext
          to be a multiple of the block cipher's block length.
    
    Freier, et al.                  Historic                       [Page 17]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       padding_length:  The length of the padding must be less than the
          cipher's block length and may be zero.  The padding length should
          be such that the total size of the GenericBlockCipher structure is
          a multiple of the cipher's block length.
    
       The encrypted data length (SSLCiphertext.length) is one more than the
       sum of SSLCompressed.length, CipherSpec.hash_size, and
       padding_length.
    
       Note: With CBC, the initialization vector (IV) for the first record
       is provided by the handshake protocol.  The IV for subsequent records
       is the last ciphertext block from the previous record.
    
    5.3.  Change Cipher Spec Protocol
    
       The change cipher spec protocol exists to signal transitions in
       ciphering strategies.  The protocol consists of a single message,
       which is encrypted and compressed under the current (not the pending)
       CipherSpec.  The message consists of a single byte of value 1.
    
            struct {
                enum { change_cipher_spec(1), (255) } type;
            } ChangeCipherSpec;
    
       The change cipher spec message is sent by both the client and server
       to notify the receiving party that subsequent records will be
       protected under the just-negotiated CipherSpec and keys.  Reception
       of this message causes the receiver to copy the read pending state
       into the read current state.  The client sends a change cipher spec
       message following handshake key exchange and certificate verify
       messages (if any), and the server sends one after successfully
       processing the key exchange message it received from the client.  An
       unexpected change cipher spec message should generate an
       unexpected_message alert (Section 5.4.2).  When resuming a previous
       session, the change cipher spec message is sent after the hello
       messages.
    
    5.4.  Alert Protocol
    
       One of the content types supported by the SSL record layer is the
       alert type.  Alert messages convey the severity of the message and a
       description of the alert.  Alert messages with a level of fatal
       result in the immediate termination of the connection.  In this case,
       other connections corresponding to the session may continue, but the
       session identifier must be invalidated, preventing the failed session
       from being used to establish new connections.  Like other messages,
       alert messages are encrypted and compressed, as specified by the
       current connection state.
    
    Freier, et al.                  Historic                       [Page 18]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
            enum { warning(1), fatal(2), (255) } AlertLevel;
    
            enum {
                close_notify(0),
                unexpected_message(10),
                bad_record_mac(20),
                decompression_failure(30),
                handshake_failure(40),
                no_certificate(41),
                bad_certificate(42),
                unsupported_certificate(43),
                certificate_revoked(44),
                certificate_expired(45),
                certificate_unknown(46),
                illegal_parameter (47)
                (255)
            } AlertDescription;
    
            struct {
                AlertLevel level;
                AlertDescription description;
            } Alert;
    
    5.4.1.  Closure Alerts
    
       The client and the server must share knowledge that the connection is
       ending in order to avoid a truncation attack.  Either party may
       initiate the exchange of closing messages.
    
       close_notify:  This message notifies the recipient that the sender
          will not send any more messages on this connection.  The session
          becomes unresumable if any connection is terminated without proper
          close_notify messages with level equal to warning.
    
       Either party may initiate a close by sending a close_notify alert.
       Any data received after a closure alert is ignored.
    
       Each party is required to send a close_notify alert before closing
       the write side of the connection.  It is required that the other
       party respond with a close_notify alert of its own and close down the
       connection immediately, discarding any pending writes.  It is not
       required for the initiator of the close to wait for the responding
       close_notify alert before closing the read side of the connection.
    
       NB: It is assumed that closing a connection reliably delivers pending
       data before destroying the transport.
    
    Freier, et al.                  Historic                       [Page 19]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.4.2.  Error Alerts
    
       Error handling in the SSL handshake protocol is very simple.  When an
       error is detected, the detecting party sends a message to the other
       party.  Upon transmission or receipt of a fatal alert message, both
       parties immediately close the connection.  Servers and clients are
       required to forget any session identifiers, keys, and secrets
       associated with a failed connection.  The following error alerts are
       defined:
    
       unexpected_message:  An inappropriate message was received.  This
          alert is always fatal and should never be observed in
          communication between proper implementations.
    
       bad_record_mac:  This alert is returned if a record is received with
          an incorrect MAC.  This message is always fatal.
    
       decompression_failure:  The decompression function received improper
          input (e.g., data that would expand to excessive length).  This
          message is always fatal.
    
       handshake_failure:  Reception of a handshake_failure alert message
          indicates that the sender was unable to negotiate an acceptable
          set of security parameters given the options available.  This is a
          fatal error.
    
       no_certificate:  A no_certificate alert message may be sent in
          response to a certification request if no appropriate certificate
          is available.
    
       bad_certificate:  A certificate was corrupt, contained signatures
          that did not verify correctly, etc.
    
       unsupported_certificate:  A certificate was of an unsupported type.
    
       certificate_revoked:  A certificate was revoked by its signer.
    
       certificate_expired:  A certificate has expired or is not currently
          valid.
    
       certificate_unknown:  Some other (unspecified) issue arose in
          processing the certificate, rendering it unacceptable.
    
       illegal_parameter:  A field in the handshake was out of range or
          inconsistent with other fields.  This is always fatal.
    
    Freier, et al.                  Historic                       [Page 20]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.5.  Handshake Protocol Overview
    
       The cryptographic parameters of the session state are produced by the
       SSL handshake protocol, which operates on top of the SSL record
       layer.  When an SSL client and server first start communicating, they
       agree on a protocol version, select cryptographic algorithms,
       optionally authenticate each other, and use public key encryption
       techniques to generate shared secrets.  These processes are performed
       in the handshake protocol, which can be summarized as follows: the
       client sends a client hello message to which the server must respond
       with a server hello message, or else a fatal error will occur and the
       connection will fail.  The client hello and server hello are used to
       establish security enhancement capabilities between client and
       server.  The client hello and server hello establish the following
       attributes: Protocol Version, Session ID, Cipher Suite, and
       Compression Method.  Additionally, two random values are generated
       and exchanged: ClientHello.random and ServerHello.random.
    
       Following the hello messages, the server will send its certificate,
       if it is to be authenticated.  Additionally, a server key exchange
       message may be sent, if it is required (e.g., if their server has no
       certificate, or if its certificate is for signing only).  If the
       server is authenticated, it may request a certificate from the
       client, if that is appropriate to the cipher suite selected.  Now the
       server will send the server hello done message, indicating that the
       hello-message phase of the handshake is complete.  The server will
       then wait for a client response.  If the server has sent a
       certificate request message, the client must send either the
       certificate message or a no_certificate alert.  The client key
       exchange message is now sent, and the content of that message will
       depend on the public key algorithm selected between the client hello
       and the server hello.  If the client has sent a certificate with
       signing ability, a digitally-signed certificate verify message is
       sent to explicitly verify the certificate.
    
       At this point, a change cipher spec message is sent by the client,
       and the client copies the pending CipherSpec into the current
       CipherSpec.  The client then immediately sends the finished message
       under the new algorithms, keys, and secrets.  In response, the server
       will send its own change cipher spec message, transfer the pending to
       the current CipherSpec, and send its finished message under the new
       CipherSpec.  At this point, the handshake is complete and the client
       and server may begin to exchange application layer data.  (See flow
       chart below.)
    
    Freier, et al.                  Historic                       [Page 21]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
          Client                                                Server
    
          ClientHello                   -------->
                                                           ServerHello
                                                          Certificate*
                                                    ServerKeyExchange*
                                                   CertificateRequest*
                                        <--------      ServerHelloDone
          Certificate*
          ClientKeyExchange
          CertificateVerify*
          [ChangeCipherSpec]
          Finished                      -------->
                                                    [ChangeCipherSpec]
                                        <--------             Finished
          Application Data              <------->     Application Data
    
          * Indicates optional or situation-dependent messages that are not
            always sent.
    
       Note: To help avoid pipeline stalls, ChangeCipherSpec is an
       independent SSL protocol content type, and is not actually an SSL
       handshake message.
    
       When the client and server decide to resume a previous session or
       duplicate an existing session (instead of negotiating new security
       parameters) the message flow is as follows:
    
       The client sends a ClientHello using the session ID of the session to
       be resumed.  The server then checks its session cache for a match.
       If a match is found, and the server is willing to re-establish the
       connection under the specified session state, it will send a
       ServerHello with the same session ID value.  At this point, both
       client and server must send change cipher spec messages and proceed
       directly to finished messages.  Once the re-establishment is
       complete, the client and server may begin to exchange application
       layer data.  (See flow chart below.)  If a session ID match is not
       found, the server generates a new session ID and the SSL client and
       server perform a full handshake.
    
    Freier, et al.                  Historic                       [Page 22]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
          Client                                                Server
    
          ClientHello                   -------->
                                                           ServerHello
                                                  [change cipher spec]
                                        <--------             Finished
          change cipher spec
          Finished                      -------->
          Application Data              <------->     Application Data
    
       The contents and significance of each message will be presented in
       detail in the following sections.
    
    5.6.  Handshake Protocol
    
       The SSL handshake protocol is one of the defined higher level clients
       of the SSL record protocol.  This protocol is used to negotiate the
       secure attributes of a session.  Handshake messages are supplied to
       the SSL record layer, where they are encapsulated within one or more
       SSLPlaintext structures, which are processed and transmitted as
       specified by the current active session state.
    
            enum {
                hello_request(0), client_hello(1), server_hello(2),
                certificate(11), server_key_exchange (12),
                certificate_request(13), server_hello_done(14),
                certificate_verify(15), client_key_exchange(16),
                finished(20), (255)
            } HandshakeType;
    
            struct {
                HandshakeType msg_type;    /* handshake type */
                uint24 length;             /* bytes in message */
                select (HandshakeType) {
                    case hello_request: HelloRequest;
                    case client_hello: ClientHello;
                    case server_hello: ServerHello;
                    case certificate: Certificate;
                    case server_key_exchange: ServerKeyExchange;
                    case certificate_request: CertificateRequest;
                    case server_hello_done: ServerHelloDone;
                    case certificate_verify: CertificateVerify;
                    case client_key_exchange: ClientKeyExchange;
                    case finished: Finished;
                } body;
            } Handshake;
    
    Freier, et al.                  Historic                       [Page 23]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       The handshake protocol messages are presented in the order they must
       be sent; sending handshake messages in an unexpected order results in
       a fatal error.
    
    5.6.1.  Hello messages
    
       The hello phase messages are used to exchange security enhancement
       capabilities between the client and server.  When a new session
       begins, the CipherSpec encryption, hash, and compression algorithms
       are initialized to null.  The current CipherSpec is used for
       renegotiation messages.
    
    5.6.1.1.  Hello Request
    
       The hello request message may be sent by the server at any time, but
       will be ignored by the client if the handshake protocol is already
       underway.  It is a simple notification that the client should begin
       the negotiation process anew by sending a client hello message when
       convenient.
    
       Note: Since handshake messages are intended to have transmission
       precedence over application data, it is expected that the negotiation
       begin in no more than one or two times the transmission time of a
       maximum-length application data message.
    
       After sending a hello request, servers should not repeat the request
       until the subsequent handshake negotiation is complete.  A client
       that receives a hello request while in a handshake negotiation state
       should simply ignore the message.
    
       The structure of a hello request message is as follows:
    
            struct { } HelloRequest;
    
    5.6.1.2.  Client Hello
    
       When a client first connects to a server it is required to send the
       client hello as its first message.  The client can also send a client
       hello in response to a hello request or on its own initiative in
       order to renegotiate the security parameters in an existing
       connection.  The client hello message includes a random structure,
       which is used later in the protocol.
    
    Freier, et al.                  Historic                       [Page 24]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
          struct {
              uint32 gmt_unix_time;
              opaque random_bytes[28];
          } Random;
    
       gmt_unix_time:  The current time and date in standard UNIX 32-bit
          format according to the sender's internal clock.  Clocks are not
          required to be set correctly by the basic SSL protocol; higher
          level or application protocols may define additional requirements.
    
       random_bytes:  28 bytes generated by a secure random number
          generator.
    
       The client hello message includes a variable-length session
       identifier.  If not empty, the value identifies a session between the
       same client and server whose security parameters the client wishes to
       reuse.  The session identifier may be from an earlier connection,
       this connection, or another currently active connection.  The second
       option is useful if the client only wishes to update the random
       structures and derived values of a connection, while the third option
       makes it possible to establish several simultaneous independent
       secure connections without repeating the full handshake protocol.
       The actual contents of the SessionID are defined by the server.
    
            opaque SessionID<0..32>;
    
       Warning: Servers must not place confidential information in session
       identifiers or let the contents of fake session identifiers cause any
       breach of security.
    
       The CipherSuite list, passed from the client to the server in the
       client hello message, contains the combinations of cryptographic
       algorithms supported by the client in order of the client's
       preference (first choice first).  Each CipherSuite defines both a key
       exchange algorithm and a CipherSpec.  The server will select a cipher
       suite or, if no acceptable choices are presented, return a handshake
       failure alert and close the connection.
    
            uint8 CipherSuite[2];  /* Cryptographic suite selector */
    
       The client hello includes a list of compression algorithms supported
       by the client, ordered according to the client's preference.  If the
       server supports none of those specified by the client, the session
       must fail.
    
            enum { null(0), (255) } CompressionMethod;
    
       Issue: Which compression methods to support is under investigation.
    
    Freier, et al.                  Historic                       [Page 25]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       The structure of the client hello is as follows.
    
            struct {
                ProtocolVersion client_version;
                Random random;
                SessionID session_id;
                CipherSuite cipher_suites<2..2^16-1>;
                CompressionMethod compression_methods<1..2^8-1>;
            } ClientHello;
    
       client_version:  The version of the SSL protocol by which the client
          wishes to communicate during this session.  This should be the
          most recent (highest valued) version supported by the client.  For
          this version of the specification, the version will be 3.0 (see
          Appendix E for details about backward compatibility).
    
       random:  A client-generated random structure.
    
       session_id:  The ID of a session the client wishes to use for this
          connection.  This field should be empty if no session_id is
          available or the client wishes to generate new security
          parameters.
    
       cipher_suites:  This is a list of the cryptographic options supported
          by the client, sorted with the client's first preference first.
          If the session_id field is not empty (implying a session
          resumption request), this vector must include at least the
          cipher_suite from that session.  Values are defined in
          Appendix A.6.
    
       compression_methods:  This is a list of the compression methods
          supported by the client, sorted by client preference.  If the
          session_id field is not empty (implying a session resumption
          request), this vector must include at least the compression_method
          from that session.  All implementations must support
          CompressionMethod.null.
    
       After sending the client hello message, the client waits for a server
       hello message.  Any other handshake message returned by the server
       except for a hello request is treated as a fatal error.
    
       Implementation note: Application data may not be sent before a
       finished message has been sent.  Transmitted application data is
       known to be insecure until a valid finished message has been
       received.  This absolute restriction is relaxed if there is a
       current, non-null encryption on this connection.
    
    Freier, et al.                  Historic                       [Page 26]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Forward compatibility note: In the interests of forward
       compatibility, it is permitted for a client hello message to include
       extra data after the compression methods.  This data must be included
       in the handshake hashes, but must otherwise be ignored.
    
    5.6.1.3.  Server Hello
    
       The server processes the client hello message and responds with
       either a handshake_failure alert or server hello message.
    
            struct {
                ProtocolVersion server_version;
                Random random;
                SessionID session_id;
                CipherSuite cipher_suite;
                CompressionMethod compression_method;
            } ServerHello;
    
       server_version:  This field will contain the lower of that suggested
          by the client in the client hello and the highest supported by the
          server.  For this version of the specification, the version will
          be 3.0 (see Appendix E for details about backward compatibility).
    
       random:  This structure is generated by the server and must be
          different from (and independent of) ClientHello.random.
    
       session_id:  This is the identity of the session corresponding to
          this connection.  If the ClientHello.session_id was non-empty, the
          server will look in its session cache for a match.  If a match is
          found and the server is willing to establish the new connection
          using the specified session state, the server will respond with
          the same value as was supplied by the client.  This indicates a
          resumed session and dictates that the parties must proceed
          directly to the finished messages.  Otherwise, this field will
          contain a different value identifying the new session.  The server
          may return an empty session_id to indicate that the session will
          not be cached and therefore cannot be resumed.
    
       cipher_suite:  The single cipher suite selected by the server from
          the list in ClientHello.cipher_suites.  For resumed sessions, this
          field is the value from the state of the session being resumed.
    
       compression_method:  The single compression algorithm selected by the
          server from the list in ClientHello.compression_methods.  For
          resumed sessions, this field is the value from the resumed session
          state.
    
    Freier, et al.                  Historic                       [Page 27]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.6.2.  Server Certificate
    
       If the server is to be authenticated (which is generally the case),
       the server sends its certificate immediately following the server
       hello message.  The certificate type must be appropriate for the
       selected cipher suite's key exchange algorithm, and is generally an
       X.509.v3 certificate (or a modified X.509 certificate in the case of
       FORTEZZA(tm) [FOR]).  The same message type will be used for the
       client's response to a certificate request message.
    
            opaque ASN.1Cert<1..2^24-1>;
            struct {
                ASN.1Cert certificate_list<1..2^24-1>;
            } Certificate;
    
       certificate_list:  This is a sequence (chain) of X.509.v3
          certificates, ordered with the sender's certificate first followed
          by any certificate authority certificates proceeding sequentially
          upward.
    
       Note: PKCS #7 [PKCS7] is not used as the format for the certificate
       vector because PKCS #6 [PKCS6] extended certificates are not used.
       Also, PKCS #7 defines a Set rather than a Sequence, making the task
       of parsing the list more difficult.
    
    5.6.3.  Server Key Exchange Message
    
       The server key exchange message is sent by the server if it has no
       certificate, has a certificate only used for signing (e.g., DSS [DSS]
       certificates, signing-only RSA [RSA] certificates), or FORTEZZA KEA
       key exchange is used.  This message is not used if the server
       certificate contains Diffie-Hellman [DH1] parameters.
    
       Note: According to current US export law, RSA moduli larger than 512
       bits may not be used for key exchange in software exported from the
       US.  With this message, larger RSA keys may be used as signature-only
       certificates to sign temporary shorter RSA keys for key exchange.
    
            enum { rsa, diffie_hellman, fortezza_kea }
                   KeyExchangeAlgorithm;
    
            struct {
                opaque rsa_modulus<1..2^16-1>;
                opaque rsa_exponent<1..2^16-1>;
            } ServerRSAParams;
    
    Freier, et al.                  Historic                       [Page 28]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       rsa_modulus:  The modulus of the server's temporary RSA key.
    
       rsa_exponent:  The public exponent of the server's temporary RSA key.
    
            struct {
                opaque dh_p<1..2^16-1>;
                opaque dh_g<1..2^16-1>;
                opaque dh_Ys<1..2^16-1>;
            } ServerDHParams;     /* Ephemeral DH parameters */
    
       dh_p:  The prime modulus used for the Diffie-Hellman operation.
    
       dh_g:  The generator used for the Diffie-Hellman operation.
    
       dh_Ys:  The server's Diffie-Hellman public value (gX mod p).
    
            struct {
                opaque r_s [128];
            } ServerFortezzaParams;
    
       r_s:  Server random number for FORTEZZA KEA (Key Exchange Algorithm).
    
            struct {
                select (KeyExchangeAlgorithm) {
                    case diffie_hellman:
                        ServerDHParams params;
                        Signature signed_params;
                    case rsa:
                        ServerRSAParams params;
                        Signature signed_params;
                    case fortezza_kea:
                        ServerFortezzaParams params;
                };
            } ServerKeyExchange;
    
       params:  The server's key exchange parameters.
    
       signed_params:  A hash of the corresponding params value, with the
          signature appropriate to that hash applied.
    
       md5_hash:  MD5(ClientHello.random + ServerHello.random +
          ServerParams);
    
    Freier, et al.                  Historic                       [Page 29]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       sha_hash:  SHA(ClientHello.random + ServerHello.random +
          ServerParams);
    
            enum { anonymous, rsa, dsa } SignatureAlgorithm;
    
            digitally-signed struct {
                select(SignatureAlgorithm) {
                    case anonymous: struct { };
                    case rsa:
                        opaque md5_hash[16];
                        opaque sha_hash[20];
                    case dsa:
                        opaque sha_hash[20];
                };
            } Signature;
    
    5.6.4.  Certificate Request
    
       A non-anonymous server can optionally request a certificate from the
       client, if appropriate for the selected cipher suite.
    
            enum {
                rsa_sign(1), dss_sign(2), rsa_fixed_dh(3), dss_fixed_dh(4),
                rsa_ephemeral_dh(5), dss_ephemeral_dh(6), fortezza_kea(20),
                (255)
            } ClientCertificateType;
    
            opaque DistinguishedName<1..2^16-1>;
    
            struct {
                ClientCertificateType certificate_types<1..2^8-1>;
                DistinguishedName certificate_authorities<3..2^16-1>;
            } CertificateRequest;
    
       certificate_types:  This field is a list of the types of certificates
          requested, sorted in order of the server's preference.
    
       certificate_authorities:  A list of the distinguished names of
          acceptable certificate authorities.
    
       Note: DistinguishedName is derived from [X509].
    
       Note: It is a fatal handshake_failure alert for an anonymous server
       to request client identification.
    
    Freier, et al.                  Historic                       [Page 30]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.6.5.  Server Hello Done
    
       The server hello done message is sent by the server to indicate the
       end of the server hello and associated messages.  After sending this
       message, the server will wait for a client response.
    
            struct { } ServerHelloDone;
    
       Upon receipt of the server hello done message the client should
       verify that the server provided a valid certificate if required and
       check that the server hello parameters are acceptable.
    
    5.6.6.  Client Certificate
    
       This is the first message the client can send after receiving a
       server hello done message.  This message is only sent if the server
       requests a certificate.  If no suitable certificate is available, the
       client should send a no_certificate alert instead.  This alert is
       only a warning; however, the server may respond with a fatal
       handshake failure alert if client authentication is required.  Client
       certificates are sent using the certificate defined in Section 5.6.2.
    
       Note: Client Diffie-Hellman certificates must match the server
       specified Diffie-Hellman parameters.
    
    5.6.7.  Client Key Exchange Message
    
       The choice of messages depends on which public key algorithm(s) has
       (have) been selected.  See Section 5.6.3 for the KeyExchangeAlgorithm
       definition.
    
            struct {
                select (KeyExchangeAlgorithm) {
                    case rsa: EncryptedPreMasterSecret;
                    case diffie_hellman: ClientDiffieHellmanPublic;
                    case fortezza_kea: FortezzaKeys;
                } exchange_keys;
            } ClientKeyExchange;
    
       The information to select the appropriate record structure is in the
       pending session state (see Section 5.1).
    
    Freier, et al.                  Historic                       [Page 31]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.6.7.1.  RSA Encrypted Premaster Secret Message
    
       If RSA is being used for key agreement and authentication, the client
       generates a 48-byte premaster secret, encrypts it under the public
       key from the server's certificate or temporary RSA key from a server
       key exchange message, and sends the result in an encrypted premaster
       secret message.
    
            struct {
                ProtocolVersion client_version;
                opaque random[46];
            } PreMasterSecret;
    
       client_version:  The latest (newest) version supported by the client.
          This is used to detect version roll-back attacks.
    
       random:  46 securely-generated random bytes.
    
            struct {
                public-key-encrypted PreMasterSecret pre_master_secret;
            } EncryptedPreMasterSecret;
    
       pre_master_secret:  This random value is generated by the client and
          is used to generate the master secret, as specified in
          Section 6.1.
    
    5.6.7.2.  FORTEZZA Key Exchange Message
    
       Under FORTEZZA, the client derives a token encryption key (TEK) using
       the FORTEZZA Key Exchange Algorithm (KEA).  The client's KEA
       calculation uses the public key in the server's certificate along
       with private parameters in the client's token.  The client sends
       public parameters needed for the server to generate the TEK, using
       its own private parameters.  The client generates session keys, wraps
       them using the TEK, and sends the results to the server.  The client
       generates IVs for the session keys and TEK and sends them also.  The
       client generates a random 48-byte premaster secret, encrypts it using
       the TEK, and sends the result:
    
    Freier, et al.                  Historic                       [Page 32]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
            struct {
                opaque y_c<0..128>;
                opaque r_c[128];
                opaque y_signature[40];
                opaque wrapped_client_write_key[12];
                opaque wrapped_server_write_key[12];
                opaque client_write_iv[24];
                opaque server_write_iv[24];
                opaque master_secret_iv[24];
                block-ciphered opaque encrypted_pre_master_secret[48];
            } FortezzaKeys;
    
       y_signature:  y_signature is the signature of the KEA public key,
          signed with the client's DSS private key.
    
       y_c:  The client's Yc value (public key) for the KEA calculation.  If
          the client has sent a certificate, and its KEA public key is
          suitable, this value must be empty since the certificate already
          contains this value.  If the client sent a certificate without a
          suitable public key, y_c is used and y_signature is the KEA public
          key signed with the client's DSS private key.  For this value to
          be used, it must be between 64 and 128 bytes.
    
       r_c:  The client's Rc value for the KEA calculation.
    
       wrapped_client_write_key:  This is the client's write key, wrapped by
          the TEK.
    
       wrapped_server_write_key:  This is the server's write key, wrapped by
          the TEK.
    
       client_write_iv:  The IV for the client write key.
    
       server_write_iv:  The IV for the server write key.
    
       master_secret_iv:  This is the IV for the TEK used to encrypt the
          premaster secret.
    
       pre_master_secret:  A random value, generated by the client and used
          to generate the master secret, as specified in Section 6.1.  In
          the above structure, it is encrypted using the TEK.
    
    Freier, et al.                  Historic                       [Page 33]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.6.7.3.  Client Diffie-Hellman Public Value
    
       This structure conveys the client's Diffie-Hellman public value (Yc)
       if it was not already included in the client's certificate.  The
       encoding used for Yc is determined by the enumerated
       PublicValueEncoding.
    
            enum { implicit, explicit } PublicValueEncoding;
    
       implicit:  If the client certificate already contains the public
          value, then it is implicit and Yc does not need to be sent again.
    
       explicit:  Yc needs to be sent.
    
            struct {
                select (PublicValueEncoding) {
                    case implicit: struct { };
                    case explicit: opaque dh_Yc<1..2^16-1>;
                } dh_public;
            } ClientDiffieHellmanPublic;
    
       dh_Yc:  The client's Diffie-Hellman public value (Yc).
    
    5.6.8.  Certificate Verify
    
       This message is used to provide explicit verification of a client
       certificate.  This message is only sent following any client
       certificate that has signing capability (i.e., all certificates
       except those containing fixed Diffie-Hellman parameters).
    
              struct {
                   Signature signature;
              } CertificateVerify;
    
            CertificateVerify.signature.md5_hash
                       MD5(master_secret + pad_2 +
                           MD5(handshake_messages + master_secret + pad_1));
            Certificate.signature.sha_hash
                       SHA(master_secret + pad_2 +
                           SHA(handshake_messages + master_secret + pad_1));
    
       pad_1:  This is identical to the pad_1 defined in Section 5.2.3.1.
    
       pad_2:  This is identical to the pad_2 defined in Section 5.2.3.1.
    
       Here, handshake_messages refers to all handshake messages starting at
       client hello up to but not including this message.
    
    Freier, et al.                  Historic                       [Page 34]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.6.9.  Finished
    
       A finished message is always sent immediately after a change cipher
       spec message to verify that the key exchange and authentication
       processes were successful.  The finished message is the first
       protected with the just-negotiated algorithms, keys, and secrets.  No
       acknowledgment of the finished message is required; parties may begin
       sending encrypted data immediately after sending the finished
       message.  Recipients of finished messages must verify that the
       contents are correct.
    
            enum { client(0x434C4E54), server(0x53525652) } Sender;
    
            struct {
                opaque md5_hash[16];
                opaque sha_hash[20];
            } Finished;
    
       md5_hash:  MD5(master_secret + pad2 + MD5(handshake_messages + Sender
          + master_secret + pad1));
    
       sha_hash:  SHA(master_secret + pad2 + SHA(handshake_messages + Sender
          + master_secret + pad1));
    
       handshake_messages:  All of the data from all handshake messages up
          to but not including this message.  This is only data visible at
          the handshake layer and does not include record layer headers.
    
       It is a fatal error if a finished message is not preceeded by a
       change cipher spec message at the appropriate point in the handshake.
    
       The hash contained in finished messages sent by the server
       incorporate Sender.server; those sent by the client incorporate
       Sender.client.  The value handshake_messages includes all handshake
       messages starting at client hello up to but not including this
       finished message.  This may be different from handshake_messages in
       Section 5.6.8 because it would include the certificate verify message
       (if sent).
    
       Note: Change cipher spec messages are not handshake messages and are
       not included in the hash computations.
    
    Freier, et al.                  Historic                       [Page 35]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    5.7.  Application Data Protocol
    
       Application data messages are carried by the record layer and are
       fragmented, compressed, and encrypted based on the current connection
       state.  The messages are treated as transparent data to the record
       layer.
    
    6.  Cryptographic Computations
    
       The key exchange, authentication, encryption, and MAC algorithms are
       determined by the cipher_suite selected by the server and revealed in
       the server hello message.
    
    6.1.  Asymmetric Cryptographic Computations
    
       The asymmetric algorithms are used in the handshake protocol to
       authenticate parties and to generate shared keys and secrets.
    
       For Diffie-Hellman, RSA, and FORTEZZA, the same algorithm is used to
       convert the pre_master_secret into the master_secret.  The
       pre_master_secret should be deleted from memory once the
       master_secret has been computed.
    
            master_secret =
              MD5(pre_master_secret + SHA('A' + pre_master_secret +
                  ClientHello.random + ServerHello.random)) +
              MD5(pre_master_secret + SHA('BB' + pre_master_secret +
                  ClientHello.random + ServerHello.random)) +
              MD5(pre_master_secret + SHA('CCC' + pre_master_secret +
                  ClientHello.random + ServerHello.random));
    
    6.1.1.  RSA
    
       When RSA is used for server authentication and key exchange, a 48-
       byte pre_master_secret is generated by the client, encrypted under
       the server's public key, and sent to the server.  The server uses its
       private key to decrypt the pre_master_secret.  Both parties then
       convert the pre_master_secret into the master_secret, as specified
       above.
    
       RSA digital signatures are performed using PKCS #1 [PKCS1] block
       type 1.  RSA public key encryption is performed using PKCS #1 block
       type 2.
    
    Freier, et al.                  Historic                       [Page 36]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    6.1.2.  Diffie-Hellman
    
       A conventional Diffie-Hellman computation is performed.  The
       negotiated key (Z) is used as the pre_master_secret, and is converted
       into the master_secret, as specified above.
    
       Note: Diffie-Hellman parameters are specified by the server, and may
       be either ephemeral or contained within the server's certificate.
    
    6.1.3.  FORTEZZA
    
       A random 48-byte pre_master_secret is sent encrypted under the TEK
       and its IV.  The server decrypts the pre_master_secret and converts
       it into a master_secret, as specified above.  Bulk cipher keys and
       IVs for encryption are generated by the client's token and exchanged
       in the key exchange message; the master_secret is only used for MAC
       computations.
    
    6.2.  Symmetric Cryptographic Calculations and the CipherSpec
    
       The technique used to encrypt and verify the integrity of SSL records
       is specified by the currently active CipherSpec.  A typical example
       would be to encrypt data using DES and generate authentication codes
       using MD5.  The encryption and MAC algorithms are set to
       SSL_NULL_WITH_NULL_NULL at the beginning of the SSL handshake
       protocol, indicating that no message authentication or encryption is
       performed.  The handshake protocol is used to negotiate a more secure
       CipherSpec and to generate cryptographic keys.
    
    6.2.1.  The Master Secret
    
       Before secure encryption or integrity verification can be performed
       on records, the client and server need to generate shared secret
       information known only to themselves.  This value is a 48-byte
       quantity called the master secret.  The master secret is used to
       generate keys and secrets for encryption and MAC computations.  Some
       algorithms, such as FORTEZZA, may have their own procedure for
       generating encryption keys (the master secret is used only for MAC
       computations in FORTEZZA).
    
    6.2.2.  Converting the Master Secret into Keys and MAC Secrets
    
       The master secret is hashed into a sequence of secure bytes, which
       are assigned to the MAC secrets, keys, and non-export IVs required by
       the current CipherSpec (see Appendix A.7).  CipherSpecs require a
       client write MAC secret, a server write MAC secret, a client write
       key, a server write key, a client write IV, and a server write IV,
       which are generated from the master secret in that order.  Unused
    
    Freier, et al.                  Historic                       [Page 37]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       values, such as FORTEZZA keys communicated in the KeyExchange
       message, are empty.  The following inputs are available to the key
       definition process:
    
              opaque MasterSecret[48]
              ClientHello.random
              ServerHello.random
    
       When generating keys and MAC secrets, the master secret is used as an
       entropy source, and the random values provide unencrypted salt
       material and IVs for exportable ciphers.
    
       To generate the key material, compute
    
            key_block =
              MD5(master_secret + SHA(`A' + master_secret +
                                      ServerHello.random +
                                      ClientHello.random)) +
              MD5(master_secret + SHA(`BB' + master_secret +
                                      ServerHello.random +
                                      ClientHello.random)) +
              MD5(master_secret + SHA(`CCC' + master_secret +
                                      ServerHello.random +
                                      ClientHello.random)) + [...];
    
       until enough output has been generated.  Then, the key_block is
       partitioned as follows.
    
            client_write_MAC_secret[CipherSpec.hash_size]
            server_write_MAC_secret[CipherSpec.hash_size]
            client_write_key[CipherSpec.key_material]
            server_write_key[CipherSpec.key_material]
            client_write_IV[CipherSpec.IV_size] /* non-export ciphers */
            server_write_IV[CipherSpec.IV_size] /* non-export ciphers */
    
       Any extra key_block material is discarded.
    
       Exportable encryption algorithms (for which CipherSpec.is_exportable
       is true) require additional processing as follows to derive their
       final write keys:
    
            final_client_write_key = MD5(client_write_key +
                                         ClientHello.random +
                                         ServerHello.random);
            final_server_write_key = MD5(server_write_key +
                                         ServerHello.random +
                                         ClientHello.random);
    
    Freier, et al.                  Historic                       [Page 38]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Exportable encryption algorithms derive their IVs from the random
       messages:
    
            client_write_IV = MD5(ClientHello.random + ServerHello.random);
            server_write_IV = MD5(ServerHello.random + ClientHello.random);
    
       MD5 outputs are trimmed to the appropriate size by discarding the
       least-significant bytes.
    
    6.2.2.1.  Export Key Generation Example
    
       SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 requires five random bytes for
       each of the two encryption keys and 16 bytes for each of the MAC
       keys, for a total of 42 bytes of key material.  MD5 produces 16 bytes
       of output per call, so three calls to MD5 are required.  The MD5
       outputs are concatenated into a 48-byte key_block with the first MD5
       call providing bytes zero through 15, the second providing bytes 16
       through 31, etc.  The key_block is partitioned, and the write keys
       are salted because this is an exportable encryption algorithm.
    
            client_write_MAC_secret = key_block[0..15]
            server_write_MAC_secret = key_block[16..31]
            client_write_key      = key_block[32..36]
            server_write_key      = key_block[37..41]
            final_client_write_key = MD5(client_write_key +
                                         ClientHello.random +
                                         ServerHello.random)[0..15];
            final_server_write_key = MD5(server_write_key +
                                         ServerHello.random +
                                         ClientHello.random)[0..15];
            client_write_IV = MD5(ClientHello.random +
                                  ServerHello.random)[0..7];
            server_write_IV = MD5(ServerHello.random +
                                  ClientHello.random)[0..7];
    
    7.  Security Considerations
    
       See Appendix F.
    
    Freier, et al.                  Historic                       [Page 39]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    8.  Informative References
    
       [DH1]      Diffie, W. and M. Hellman, "New Directions in
                  Cryptography", IEEE Transactions on Information Theory V.
                  IT-22, n. 6, pp. 74-84, June 1977.
    
       [SSL-2]    Hickman, K., "The SSL Protocol", February 1995.
    
       [3DES]     Tuchman, W., "Hellman Presents No Shortcut Solutions To
                  DES", IEEE Spectrum, v. 16, n. 7, pp 40-41, July 1979.
    
       [DES]      ANSI X3.106, "American National Standard for Information
                  Systems-Data Link Encryption", American National
                  Standards Institute, 1983.
    
       [DSS]      NIST FIPS PUB 186, "Digital Signature Standard", National
                  Institute of Standards and Technology U.S. Department of
                  Commerce, May 1994.
    
       [FOR]      NSA X22, "FORTEZZA: Application Implementers Guide",
                  Document # PD4002103-1.01, April 1995.
    
       [RFC0959]  Postel, J. and J. Reynolds, "File Transfer Protocol",
                  STD 9, RFC 959, October 1985.
    
       [RFC0791]  Postel, J., "Internet Protocol", STD 5, RFC 791,
                  September 1981.
    
       [RFC1945]  Berners-Lee, T., Fielding, R., and H. Nielsen, "Hypertext
                  Transfer Protocol -- HTTP/1.0", RFC 1945, May 1996.
    
       [RFC1321]  Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321,
                  April 1992.
    
       [RFC0793]  Postel, J., "Transmission Control Protocol", STD 7,
                  RFC 793, September 1981.
    
       [RFC0854]  Postel, J. and J. Reynolds, "Telnet Protocol
                  Specification", STD 8, RFC 854, May 1983.
    
       [RFC1832]  Srinivasan, R., "XDR: External Data Representation
                  Standard", RFC 1832, August 1995.
    
    Freier, et al.                  Historic                       [Page 40]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       [RFC2104]  Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
                  Hashing for Message Authentication", RFC 2104,
                  February 1997.
    
       [IDEA]     Lai, X., "On the Design and Security of Block Ciphers",
                  ETH Series in Information Processing, v. 1, Konstanz:
                  Hartung-Gorre Verlag, 1992.
    
       [PKCS1]    RSA Laboratories, "PKCS #1: RSA Encryption Standard
                  version 1.5", November 1993.
    
       [PKCS6]    RSA Laboratories, "PKCS #6: RSA Extended Certificate
                  Syntax Standard version 1.5", November 1993.
    
       [PKCS7]    RSA Laboratories, "PKCS #7: RSA Cryptographic Message
                  Syntax Standard version 1.5", November 1993.
    
       [RSA]      Rivest, R., Shamir, A., and L. Adleman, "A Method for
                  Obtaining Digital Signatures and Public-Key
                  Cryptosystems", Communications of the ACM v. 21, n. 2 pp.
                  120-126., February 1978.
    
       [SCH]      Schneier, B., "Applied Cryptography: Protocols,
                  Algorithms, and Source Code in C", John Wiley & Sons,
                  1994.
    
       [SHA]      NIST FIPS PUB 180-1, "Secure Hash Standard", May 1994.
    
                  National Institute of Standards and Technology, U.S.
                  Department of Commerce, DRAFT
    
       [X509]     CCITT, "The Directory - Authentication Framework",
                  Recommendation X.509 , 1988.
    
       [RSADSI]   RSA Data Security, Inc., "Unpublished works".
    
    Freier, et al.                  Historic                       [Page 41]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    Appendix A.  Protocol Constant Values
    
       This section describes protocol types and constants.
    
    A.1.  Record Layer
    
            struct {
                uint8 major, minor;
            } ProtocolVersion;
    
            ProtocolVersion version = { 3,0 };
    
            enum {
                change_cipher_spec(20), alert(21), handshake(22),
                application_data(23), (255)
            } ContentType;
    
            struct {
                ContentType type;
                ProtocolVersion version;
                uint16 length;
                opaque fragment[SSLPlaintext.length];
            } SSLPlaintext;
    
            struct {
                ContentType type;
                ProtocolVersion version;
                uint16 length;
                opaque fragment[SSLCompressed.length];
            } SSLCompressed;
    
            struct {
                ContentType type;
                ProtocolVersion version;
                uint16 length;
                select (CipherSpec.cipher_type) {
                    case stream: GenericStreamCipher;
                    case block:  GenericBlockCipher;
                } fragment;
            } SSLCiphertext;
    
            stream-ciphered struct {
                opaque content[SSLCompressed.length];
                opaque MAC[CipherSpec.hash_size];
            } GenericStreamCipher;
    
            block-ciphered struct {
                opaque content[SSLCompressed.length];
    
    Freier, et al.                  Historic                       [Page 42]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
                opaque MAC[CipherSpec.hash_size];
                uint8 padding[GenericBlockCipher.padding_length];
                uint8 padding_length;
            } GenericBlockCipher;
    
    A.2.  Change Cipher Specs Message
    
            struct {
                enum { change_cipher_spec(1), (255) } type;
            } ChangeCipherSpec;
    
    A.3.  Alert Messages
    
            enum { warning(1), fatal(2), (255) } AlertLevel;
    
            enum {
                close_notify(0),
                unexpected_message(10),
                bad_record_mac(20),
                decompression_failure(30),
                handshake_failure(40),
                no_certificate(41),
                bad_certificate(42),
                unsupported_certificate(43),
                certificate_revoked(44),
                certificate_expired(45),
                certificate_unknown(46),
                illegal_parameter (47),
                (255)
            } AlertDescription;
    
            struct {
                AlertLevel level;
                AlertDescription description;
            } Alert;
    
    Freier, et al.                  Historic                       [Page 43]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    A.4.  Handshake Protocol
    
          enum {
              hello_request(0), client_hello(1), server_hello(2),
              certificate(11), server_key_exchange (12),
              certificate_request(13), server_done(14),
              certificate_verify(15), client_key_exchange(16),
              finished(20), (255)
          } HandshakeType;
    
            struct {
                HandshakeType msg_type;
                uint24 length;
                select (HandshakeType) {
                    case hello_request: HelloRequest;
                    case client_hello: ClientHello;
                    case server_hello: ServerHello;
                    case certificate: Certificate;
                    case server_key_exchange: ServerKeyExchange;
                    case certificate_request: CertificateRequest;
                    case server_done: ServerHelloDone;
                    case certificate_verify: CertificateVerify;
                    case client_key_exchange: ClientKeyExchange;
                    case finished: Finished;
                } body;
            } Handshake;
    
    A.4.1.  Hello Messages
    
            struct { } HelloRequest;
    
            struct {
                uint32 gmt_unix_time;
                opaque random_bytes[28];
            } Random;
    
            opaque SessionID<0..32>;
    
            uint8 CipherSuite[2];
    
            enum { null(0), (255) } CompressionMethod;
    
            struct {
                ProtocolVersion client_version;
                Random random;
                SessionID session_id;
                CipherSuite cipher_suites<0..2^16-1>;
                CompressionMethod compression_methods<0..2^8-1>;
    
    Freier, et al.                  Historic                       [Page 44]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
            } ClientHello;
    
            struct {
                ProtocolVersion server_version;
                Random random;
                SessionID session_id;
                CipherSuite cipher_suite;
                CompressionMethod compression_method;
            } ServerHello;
    
    A.4.2.  Server Authentication and Key Exchange Messages
    
            opaque ASN.1Cert<2^24-1>;
    
            struct {
                ASN.1Cert certificate_list<1..2^24-1>;
            } Certificate;
    
            enum { rsa, diffie_hellman, fortezza_kea } KeyExchangeAlgorithm;
    
            struct {
                opaque RSA_modulus<1..2^16-1>;
                opaque RSA_exponent<1..2^16-1>;
            } ServerRSAParams;
    
            struct {
                opaque DH_p<1..2^16-1>;
                opaque DH_g<1..2^16-1>;
                opaque DH_Ys<1..2^16-1>;
            } ServerDHParams;
    
            struct {
                opaque r_s [128]
            } ServerFortezzaParams
    
            struct {
                select (KeyExchangeAlgorithm) {
                    case diffie_hellman:
                        ServerDHParams params;
                        Signature signed_params;
                    case rsa:
                        ServerRSAParams params;
                        Signature signed_params;
                    case fortezza_kea:
                        ServerFortezzaParams params;
                };
            } ServerKeyExchange;
    
    Freier, et al.                  Historic                       [Page 45]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
            enum { anonymous, rsa, dsa } SignatureAlgorithm;
    
            digitally-signed struct {
                select(SignatureAlgorithm) {
                    case anonymous: struct { };
                    case rsa:
                        opaque md5_hash[16];
                        opaque sha_hash[20];
                    case dsa:
                        opaque sha_hash[20];
                };
            } Signature;
    
            enum {
                RSA_sign(1), DSS_sign(2), RSA_fixed_DH(3),
                DSS_fixed_DH(4), RSA_ephemeral_DH(5), DSS_ephemeral_DH(6),
                FORTEZZA_MISSI(20), (255)
            } CertificateType;
    
            opaque DistinguishedName<1..2^16-1>;
    
            struct {
                CertificateType certificate_types<1..2^8-1>;
                DistinguishedName certificate_authorities<3..2^16-1>;
            } CertificateRequest;
    
            struct { } ServerHelloDone;
    
    A.5.  Client Authentication and Key Exchange Messages
    
            struct {
                select (KeyExchangeAlgorithm) {
                    case rsa: EncryptedPreMasterSecret;
                    case diffie_hellman: DiffieHellmanClientPublicValue;
                    case fortezza_kea: FortezzaKeys;
                } exchange_keys;
            } ClientKeyExchange;
    
            struct {
                ProtocolVersion client_version;
                opaque random[46];
            } PreMasterSecret;
    
            struct {
                public-key-encrypted PreMasterSecret pre_master_secret;
            } EncryptedPreMasterSecret;
    
    Freier, et al.                  Historic                       [Page 46]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
            struct {
                opaque y_c<0..128>;
                opaque r_c[128];
                opaque y_signature[40];
                opaque wrapped_client_write_key[12];
                opaque wrapped_server_write_key[12];
                opaque client_write_iv[24];
                opaque server_write_iv[24];
                opaque master_secret_iv[24];
                opaque encrypted_preMasterSecret[48];
            } FortezzaKeys;
    
            enum { implicit, explicit } PublicValueEncoding;
    
            struct {
                select (PublicValueEncoding) {
                    case implicit: struct {};
                    case explicit: opaque DH_Yc<1..2^16-1>;
                } dh_public;
            } ClientDiffieHellmanPublic;
    
            struct {
                Signature signature;
            } CertificateVerify;
    
    A.5.1.  Handshake Finalization Message
    
            struct {
                opaque md5_hash[16];
                opaque sha_hash[20];
            } Finished;
    
    A.6.  The CipherSuite
    
       The following values define the CipherSuite codes used in the client
       hello and server hello messages.
    
       A CipherSuite defines a cipher specifications supported in SSL
       version 3.0.
    
         CipherSuite SSL_NULL_WITH_NULL_NULL                = { 0x00,0x00 };
    
       The following CipherSuite definitions require that the server provide
       an RSA certificate that can be used for key exchange.  The server may
       request either an RSA or a DSS signature-capable certificate in the
       certificate request message.
    
    Freier, et al.                  Historic                       [Page 47]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
         CipherSuite SSL_RSA_WITH_NULL_MD5                  = { 0x00,0x01 };
         CipherSuite SSL_RSA_WITH_NULL_SHA                  = { 0x00,0x02 };
         CipherSuite SSL_RSA_EXPORT_WITH_RC4_40_MD5         = { 0x00,0x03 };
         CipherSuite SSL_RSA_WITH_RC4_128_MD5               = { 0x00,0x04 };
         CipherSuite SSL_RSA_WITH_RC4_128_SHA               = { 0x00,0x05 };
         CipherSuite SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5     = { 0x00,0x06 };
         CipherSuite SSL_RSA_WITH_IDEA_CBC_SHA              = { 0x00,0x07 };
         CipherSuite SSL_RSA_EXPORT_WITH_DES40_CBC_SHA      = { 0x00,0x08 };
         CipherSuite SSL_RSA_WITH_DES_CBC_SHA               = { 0x00,0x09 };
         CipherSuite SSL_RSA_WITH_3DES_EDE_CBC_SHA          = { 0x00,0x0A };
    
       The following CipherSuite definitions are used for server-
       authenticated (and optionally client-authenticated) Diffie-Hellman.
       DH denotes cipher suites in which the server's certificate contains
       the Diffie-Hellman parameters signed by the certificate authority
       (CA).  DHE denotes ephemeral Diffie-Hellman, where the Diffie-Hellman
       parameters are signed by a DSS or RSA certificate, which has been
       signed by the CA.  The signing algorithm used is specified after the
       DH or DHE parameter.  In all cases, the client must have the same
       type of certificate, and must use the Diffie-Hellman parameters
       chosen by the server.
    
         CipherSuite SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA   = { 0x00,0x0B };
         CipherSuite SSL_DH_DSS_WITH_DES_CBC_SHA            = { 0x00,0x0C };
         CipherSuite SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA       = { 0x00,0x0D };
         CipherSuite SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA   = { 0x00,0x0E };
         CipherSuite SSL_DH_RSA_WITH_DES_CBC_SHA            = { 0x00,0x0F };
         CipherSuite SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA       = { 0x00,0x10 };
         CipherSuite SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA  = { 0x00,0x11 };
         CipherSuite SSL_DHE_DSS_WITH_DES_CBC_SHA           = { 0x00,0x12 };
         CipherSuite SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x13 };
         CipherSuite SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA  = { 0x00,0x14 };
         CipherSuite SSL_DHE_RSA_WITH_DES_CBC_SHA           = { 0x00,0x15 };
         CipherSuite SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x16 };
    
       The following cipher suites are used for completely anonymous Diffie-
       Hellman communications in which neither party is authenticated.  Note
       that this mode is vulnerable to man-in-the-middle attacks and is
       therefore strongly discouraged.
    
         CipherSuite SSL_DH_anon_EXPORT_WITH_RC4_40_MD5     = { 0x00,0x17 };
         CipherSuite SSL_DH_anon_WITH_RC4_128_MD5           = { 0x00,0x18 };
         CipherSuite SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA  = { 0x00,0x19 };
         CipherSuite SSL_DH_anon_WITH_DES_CBC_SHA           = { 0x00,0x1A };
         CipherSuite SSL_DH_anon_WITH_3DES_EDE_CBC_SHA      = { 0x00,0x1B };
    
    Freier, et al.                  Historic                       [Page 48]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       The final cipher suites are for the FORTEZZA token.
    
         CipherSuite SSL_FORTEZZA_KEA_WITH_NULL_SHA         = { 0X00,0X1C };
         CipherSuite SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA = { 0x00,0x1D };
         CipherSuite SSL_FORTEZZA_KEA_WITH_RC4_128_SHA      = { 0x00,0x1E };
    
       Note: All cipher suites whose first byte is 0xFF are considered
       private and can be used for defining local/experimental algorithms.
       Interoperability of such types is a local matter.
    
    A.7.  The CipherSpec
    
       A cipher suite identifies a CipherSpec.  These structures are part of
       the SSL session state.  The CipherSpec includes:
    
            enum { stream, block } CipherType;
    
            enum { true, false } IsExportable;
    
            enum { null, rc4, rc2, des, 3des, des40, fortezza }
                BulkCipherAlgorithm;
    
            enum { null, md5, sha } MACAlgorithm;
    
            struct {
                BulkCipherAlgorithm bulk_cipher_algorithm;
                MACAlgorithm mac_algorithm;
                CipherType cipher_type;
                IsExportable is_exportable
                uint8 hash_size;
                uint8 key_material;
                uint8 IV_size;
            } CipherSpec;
    
    Freier, et al.                  Historic                       [Page 49]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    Appendix B.  Glossary
    
       application protocol:  An application protocol is a protocol that
          normally layers directly on top of the transport layer (e.g.,
          TCP/IP [RFC0793]/[RFC0791]).  Examples include HTTP [RFC1945],
          TELNET [RFC0959], FTP [RFC0854], and SMTP.
    
       asymmetric cipher:  See public key cryptography.
    
       authentication:  Authentication is the ability of one entity to
          determine the identity of another entity.
    
       block cipher:  A block cipher is an algorithm that operates on
          plaintext in groups of bits, called blocks. 64 bits is a typical
          block size.
    
       bulk cipher:  A symmetric encryption algorithm used to encrypt large
          quantities of data.
    
       cipher block chaining (CBC) mode:  CBC is a mode in which every
          plaintext block encrypted with the block cipher is first
          exclusive-ORed with the previous ciphertext block (or, in the case
          of the first block, with the initialization vector).
    
       certificate:  As part of the X.509 protocol (a.k.a.  ISO
          Authentication framework), certificates are assigned by a trusted
          certificate authority and provide verification of a party's
          identity and may also supply its public key.
    
       client:  The application entity that initiates a connection to a
          server.
    
       client write key:  The key used to encrypt data written by the
          client.
    
       client write MAC secret:  The secret data used to authenticate data
          written by the client.
    
       connection:  A connection is a transport (in the OSI layering model
          definition) that provides a suitable type of service.  For SSL,
          such connections are peer-to-peer relationships.  The connections
          are transient.  Every connection is associated with one session.
    
       Data Encryption Standard (DES):  DES is a very widely used symmetric
          encryption algorithm.  DES is a block cipher [DES] [3DES].
    
    Freier, et al.                  Historic                       [Page 50]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Digital Signature Standard:  (DSS) A standard for digital signing,
          including the Digital Signature Algorithm, approved by the
          National Institute of Standards and Technology, defined in NIST
          FIPS PUB 186, "Digital Signature Standard," published May, 1994 by
          the U.S. Dept. of Commerce.
    
       digital signatures:  Digital signatures utilize public key
          cryptography and one-way hash functions to produce a signature of
          the data that can be authenticated, and is difficult to forge or
          repudiate.
    
       FORTEZZA:  A PCMCIA card that provides both encryption and digital
          signing.
    
       handshake:  An initial negotiation between client and server that
          establishes the parameters of their transactions.
    
       Initialization Vector (IV):  When a block cipher is used in CBC mode,
          the initialization vector is exclusive-ORed with the first
          plaintext block prior to encryption.
    
       IDEA:  A 64-bit block cipher designed by Xuejia Lai and James Massey
          [IDEA].
    
       Message Authentication Code (MAC):  A Message Authentication Code is
          a one-way hash computed from a message and some secret data.  Its
          purpose is to detect if the message has been altered.
    
       master secret:  Secure secret data used for generating encryption
          keys, MAC secrets, and IVs.
    
       MD5:  MD5 [RFC1321] is a secure hashing function that converts an
          arbitrarily long data stream into a digest of fixed size.
    
       public key cryptography:  A class of cryptographic techniques
          employing two-key ciphers.  Messages encrypted with the public key
          can only be decrypted with the associated private key.
          Conversely, messages signed with the private key can be verified
          with the public key.
    
       one-way hash function:  A one-way transformation that converts an
          arbitrary amount of data into a fixed-length hash.  It is
          computationally hard to reverse the transformation or to find
          collisions.  MD5 and SHA are examples of one-way hash functions.
    
    Freier, et al.                  Historic                       [Page 51]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       RC2, RC4:  Proprietary bulk ciphers from RSA Data Security, Inc.
          (There is no good reference to these as they are unpublished
          works; however, see [RSADSI]).  RC2 is a block cipher and RC4 is a
          stream cipher.
    
       RSA:  A very widely used public key algorithm that can be used for
          either encryption or digital signing.
    
       salt:  Non-secret random data used to make export encryption keys
          resist precomputation attacks.
    
       server:  The server is the application entity that responds to
          requests for connections from clients.  The server is passive,
          waiting for requests from clients.
    
       session:  An SSL session is an association between a client and a
          server.  Sessions are created by the handshake protocol.  Sessions
          define a set of cryptographic security parameters, which can be
          shared among multiple connections.  Sessions are used to avoid the
          expensive negotiation of new security parameters for each
          connection.
    
       session identifier:  A session identifier is a value generated by a
          server that identifies a particular session.
    
       server write key:  The key used to encrypt data written by the
          server.
    
       server write MAC secret:  The secret data used to authenticate data
          written by the server.
    
       SHA:  The Secure Hash Algorithm is defined in FIPS PUB 180-1.  It
          produces a 20-byte output [SHA].
    
       stream cipher:  An encryption algorithm that converts a key into a
          cryptographically strong keystream, which is then exclusive-ORed
          with the plaintext.
    
       symmetric cipher:  See bulk cipher.
    
    Freier, et al.                  Historic                       [Page 52]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    Appendix C.  CipherSuite Definitions
    
    CipherSuite                  Is         Key            Cipher       Hash
                                 Exportable Exchange
    
    SSL_NULL_WITH_NULL_NULL               * NULL           NULL         NULL
    SSL_RSA_WITH_NULL_MD5                 * RSA            NULL         MD5
    SSL_RSA_WITH_NULL_SHA                 * RSA            NULL         SHA
    SSL_RSA_EXPORT_WITH_RC4_40_MD5        * RSA_EXPORT     RC4_40       MD5
    SSL_RSA_WITH_RC4_128_MD5                RSA            RC4_128      MD5
    SSL_RSA_WITH_RC4_128_SHA                RSA            RC4_128      SHA
    SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5    * RSA_EXPORT     RC2_CBC_40   MD5
    SSL_RSA_WITH_IDEA_CBC_SHA               RSA            IDEA_CBC     SHA
    SSL_RSA_EXPORT_WITH_DES40_CBC_SHA     * RSA_EXPORT     DES40_CBC    SHA
    SSL_RSA_WITH_DES_CBC_SHA                RSA            DES_CBC      SHA
    SSL_RSA_WITH_3DES_EDE_CBC_SHA           RSA            3DES_EDE_CBC SHA
    SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA  * DH_DSS_EXPORT  DES40_CBC    SHA
    SSL_DH_DSS_WITH_DES_CBC_SHA             DH_DSS         DES_CBC      SHA
    SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA        DH_DSS         3DES_EDE_CBC SHA
    SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA  * DH_RSA_EXPORT  DES40_CBC    SHA
    SSL_DH_RSA_WITH_DES_CBC_SHA             DH_RSA         DES_CBC      SHA
    SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA        DH_RSA         3DES_EDE_CBC SHA
    SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA * DHE_DSS_EXPORT DES40_CBC    SHA
    SSL_DHE_DSS_WITH_DES_CBC_SHA            DHE_DSS        DES_CBC      SHA
    SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA       DHE_DSS        3DES_EDE_CBC SHA
    SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA * DHE_RSA_EXPORT DES40_CBC    SHA
    SSL_DHE_RSA_WITH_DES_CBC_SHA            DHE_RSA        DES_CBC      SHA
    SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA       DHE_RSA        3DES_EDE_CBC SHA
    SSL_DH_anon_EXPORT_WITH_RC4_40_MD5    * DH_anon_EXPORT RC4_40       MD5
    SSL_DH_anon_WITH_RC4_128_MD5            DH_anon        RC4_128      MD5
    SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA   DH_anon        DES40_CBC    SHA
    SSL_DH_anon_WITH_DES_CBC_SHA            DH_anon        DES_CBC      SHA
    SSL_DH_anon_WITH_3DES_EDE_CBC_SHA       DH_anon        3DES_EDE_CBC SHA
    SSL_FORTEZZA_KEA_WITH_NULL_SHA          FORTEZZA_KEA   NULL         SHA
    SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA  FORTEZZA_KEA   FORTEZZA_CBC SHA
    SSL_FORTEZZA_KEA_WITH_RC4_128_SHA       FORTEZZA_KEA   RC4_128      SHA
    
    Freier, et al.                  Historic                       [Page 53]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       +----------------+------------------------------+-------------------+
       |  Key Exchange  |          Description         |   Key Size Limit  |
       |    Algorithm   |                              |                   |
       +----------------+------------------------------+-------------------+
       |     DHE_DSS    |     Ephemeral DH with DSS    |        None       |
       |                |          signatures          |                   |
       | DHE_DSS_EXPORT |     Ephemeral DH with DSS    |   DH = 512 bits   |
       |                |          signatures          |                   |
       |     DHE_RSA    |     Ephemeral DH with RSA    |        None       |
       |                |          signatures          |                   |
       | DHE_RSA_EXPORT |     Ephemeral DH with RSA    |   DH = 512 bits,  |
       |                |          signatures          |     RSA = none    |
       |     DH_anon    |  Anonymous DH, no signatures |        None       |
       | DH_anon_EXPORT |  Anonymous DH, no signatures |   DH = 512 bits   |
       |     DH_DSS     |       DH with DSS-based      |        None       |
       |                |         certificates         |                   |
       |  DH_DSS_EXPORT |       DH with DSS-based      |   DH = 512 bits   |
       |                |         certificates         |                   |
       |     DH_RSA     |       DH with RSA-based      |        None       |
       |                |         certificates         |                   |
       |  DH_RSA_EXPORT |       DH with RSA-based      |   DH = 512 bits,  |
       |                |         certificates         |     RSA = none    |
       |  FORTEZZA_KEA  |     FORTEZZA KEA. Details    |        N/A        |
       |                |          unpublished         |                   |
       |      NULL      |        No key exchange       |        N/A        |
       |       RSA      |       RSA key exchange       |        None       |
       |   RSA_EXPORT   |       RSA key exchange       |   RSA = 512 bits  |
       +----------------+------------------------------+-------------------+
    
                                      Table 1
    
       Key size limit:  The key size limit gives the size of the largest
          public key that can be legally used for encryption in cipher
          suites that are exportable.
    
    Freier, et al.                  Historic                       [Page 54]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       +--------------+--------+-----+-------+-------+-------+------+------+
       | Cipher       | Cipher | IsE |  Key  |  Exp. | Effec |  IV  | Bloc |
       |              |  Type  | xpo | Mater |  Key  |  tive | Size |   k  |
       |              |        | rta |  ial  | Mater |  Key  |      | Size |
       |              |        | ble |       |  ial  |  Bits |      |      |
       +--------------+--------+-----+-------+-------+-------+------+------+
       | NULL         | Stream |  *  |   0   |   0   |   0   |   0  |  N/A |
       | FORTEZZA_CBC |  Block |     |   NA  |   12  |   96  |  20  |   8  |
       |              |        |     |  (**) |  (**) |  (**) | (**) |      |
       | IDEA_CBC     |  Block |     |   16  |   16  |  128  |   8  |   8  |
       | RC2_CBC_40   |  Block |  *  |   5   |   16  |   40  |   8  |   8  |
       | RC4_40       | Stream |  *  |   5   |   16  |   40  |   0  |  N/A |
       | RC4_128      | Stream |     |   16  |   16  |  128  |   0  |  N/A |
       | DES40_CBC    |  Block |  *  |   5   |   8   |   40  |   8  |   8  |
       | DES_CBC      |  Block |     |   8   |   8   |   56  |   8  |   8  |
       | 3DES_EDE_CBC |  Block |     |   24  |   24  |  168  |   8  |   8  |
       +--------------+--------+-----+-------+-------+-------+------+------+
    
                         * Indicates IsExportable is true.
            ** FORTEZZA uses its own key and IV generation algorithms.
    
                                      Table 2
    
       Key Material:  The number of bytes from the key_block that are used
          for generating the write keys.
    
       Expanded Key Material:  The number of bytes actually fed into the
          encryption algorithm.
    
       Effective Key Bits:  How much entropy material is in the key material
          being fed into the encryption routines.
    
                   +---------------+-----------+--------------+
                   | Hash Function | Hash Size | Padding Size |
                   +---------------+-----------+--------------+
                   |      NULL     |     0     |       0      |
                   |      MD5      |     16    |      48      |
                   |      SHA      |     20    |      40      |
                   +---------------+-----------+--------------+
    
                                      Table 3
    
    Freier, et al.                  Historic                       [Page 55]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    Appendix D.  Implementation Notes
    
       The SSL protocol cannot prevent many common security mistakes.  This
       section provides several recommendations to assist implementers.
    
    D.1.  Temporary RSA Keys
    
       US export restrictions limit RSA keys used for encryption to 512
       bits, but do not place any limit on lengths of RSA keys used for
       signing operations.  Certificates often need to be larger than 512
       bits, since 512-bit RSA keys are not secure enough for high-value
       transactions or for applications requiring long-term security.  Some
       certificates are also designated signing-only, in which case they
       cannot be used for key exchange.
    
       When the public key in the certificate cannot be used for encryption,
       the server signs a temporary RSA key, which is then exchanged.  In
       exportable applications, the temporary RSA key should be the maximum
       allowable length (i.e., 512 bits).  Because 512-bit RSA keys are
       relatively insecure, they should be changed often.  For typical
       electronic commerce applications, it is suggested that keys be
       changed daily or every 500 transactions, and more often if possible.
       Note that while it is acceptable to use the same temporary key for
       multiple transactions, it must be signed each time it is used.
    
       RSA key generation is a time-consuming process.  In many cases, a
       low-priority process can be assigned the task of key generation.
       Whenever a new key is completed, the existing temporary key can be
       replaced with the new one.
    
    D.2.  Random Number Generation and Seeding
    
       SSL requires a cryptographically secure pseudorandom number generator
       (PRNG).  Care must be taken in designing and seeding PRNGs.  PRNGs
       based on secure hash operations, most notably MD5 and/or SHA, are
       acceptable, but cannot provide more security than the size of the
       random number generator state.  (For example, MD5-based PRNGs usually
       provide 128 bits of state.)
    
       To estimate the amount of seed material being produced, add the
       number of bits of unpredictable information in each seed byte.  For
       example, keystroke timing values taken from a PC-compatible's 18.2 Hz
       timer provide 1 or 2 secure bits each, even though the total size of
       the counter value is 16 bits or more.  To seed a 128-bit PRNG, one
       would thus require approximately 100 such timer values.
    
    Freier, et al.                  Historic                       [Page 56]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Note: The seeding functions in RSAREF and versions of BSAFE prior to
       3.0 are order independent.  For example, if 1000 seed bits are
       supplied, one at a time, in 1000 separate calls to the seed function,
       the PRNG will end up in a state that depends only on the number of 0
       or 1 seed bits in the seed data (i.e., there are 1001 possible final
       states).  Applications using BSAFE or RSAREF must take extra care to
       ensure proper seeding.
    
    D.3.  Certificates and Authentication
    
       Implementations are responsible for verifying the integrity of
       certificates and should generally support certificate revocation
       messages.  Certificates should always be verified to ensure proper
       signing by a trusted certificate authority (CA).  The selection and
       addition of trusted CAs should be done very carefully.  Users should
       be able to view information about the certificate and root CA.
    
    D.4.  CipherSuites
    
       SSL supports a range of key sizes and security levels, including some
       that provide no or minimal security.  A proper implementation will
       probably not support many cipher suites.  For example, 40-bit
       encryption is easily broken, so implementations requiring strong
       security should not allow 40-bit keys.  Similarly, anonymous Diffie-
       Hellman is strongly discouraged because it cannot prevent man-in-the-
       middle attacks.  Applications should also enforce minimum and maximum
       key sizes.  For example, certificate chains containing 512-bit RSA
       keys or signatures are not appropriate for high-security
       applications.
    
    D.5.  FORTEZZA
    
       This section describes implementation details for cipher suites that
       make use of the FORTEZZA hardware encryption system.
    
    D.5.1.  Notes on Use of FORTEZZA Hardware
    
       A complete explanation of all issues regarding the use of FORTEZZA
       hardware is outside the scope of this document.  However, there are a
       few special requirements of SSL that deserve mention.
    
       Because SSL is a full duplex protocol, two crypto states must be
       maintained, one for reading and one for writing.  There are also a
       number of circumstances that can result in the crypto state in the
       FORTEZZA card being lost.  For these reasons, it's recommended that
       the current crypto state be saved after processing a record, and
       loaded before processing the next.
    
    Freier, et al.                  Historic                       [Page 57]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       After the client generates the TEK, it also generates two message
       encryption keys (MEKs), one for reading and one for writing.  After
       generating each of these keys, the client must generate a
       corresponding IV and then save the crypto state.  The client also
       uses the TEK to generate an IV and encrypt the premaster secret.  All
       three IVs are sent to the server, along with the wrapped keys and the
       encrypted premaster secret in the client key exchange message.  At
       this point, the TEK is no longer needed, and may be discarded.
    
       On the server side, the server uses the master IV and the TEK to
       decrypt the premaster secret.  It also loads the wrapped MEKs into
       the card.  The server loads both IVs to verify that the IVs match the
       keys.  However, since the card is unable to encrypt after loading an
       IV, the server must generate a new IV for the server write key.  This
       IV is discarded.
    
       When encrypting the first encrypted record (and only that record),
       the server adds 8 bytes of random data to the beginning of the
       fragment.  These 8 bytes are discarded by the client after
       decryption.  The purpose of this is to synchronize the state on the
       client and server resulting from the different IVs.
    
    D.5.2.  FORTEZZA Cipher Suites
    
       5) FORTEZZA_NULL_WITH_NULL_SHA: Uses the full FORTEZZA key exchange,
       including sending server and client write keys and IVs.
    
    D.5.3.  FORTEZZA Session Resumption
    
       There are two possibilities for FORTEZZA session restart: 1) Never
       restart a FORTEZZA session. 2) Restart a session with the previously
       negotiated keys and IVs.
    
       Never restarting a FORTEZZA session:
    
       Clients who never restart FORTEZZA sessions should never send session
       IDs that were previously used in a FORTEZZA session as part of the
       ClientHello.  Servers who never restart FORTEZZA sessions should
       never send a previous session id on the ServerHello if the negotiated
       session is FORTEZZA.
    
       Restart a session:
    
       You cannot restart FORTEZZA on a session that has never done a
       complete FORTEZZA key exchange (that is, you cannot restart FORTEZZA
       if the session was an RSA/RC4 session renegotiated for FORTEZZA).  If
       you wish to restart a FORTEZZA session, you must save the MEKs and
    
    Freier, et al.                  Historic                       [Page 58]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       IVs from the initial key exchange for this session and reuse them for
       any new connections on that session.  This is not recommended, but it
       is possible.
    
    Appendix E.  Version 2.0 Backward Compatibility
    
       Version 3.0 clients that support version 2.0 servers must send
       version 2.0 client hello messages [SSL-2].  Version 3.0 servers
       should accept either client hello format.  The only deviations from
       the version 2.0 specification are the ability to specify a version
       with a value of three and the support for more ciphering types in the
       CipherSpec.
    
       Warning: The ability to send version 2.0 client hello messages will
       be phased out with all due haste.  Implementers should make every
       effort to move forward as quickly as possible.  Version 3.0 provides
       better mechanisms for transitioning to newer versions.
    
       The following cipher specifications are carryovers from SSL version
       2.0.  These are assumed to use RSA for key exchange and
       authentication.
    
            V2CipherSpec SSL_RC4_128_WITH_MD5          = { 0x01,0x00,0x80 };
            V2CipherSpec SSL_RC4_128_EXPORT40_WITH_MD5 = { 0x02,0x00,0x80 };
            V2CipherSpec SSL_RC2_CBC_128_CBC_WITH_MD5  = { 0x03,0x00,0x80 };
            V2CipherSpec SSL_RC2_CBC_128_CBC_EXPORT40_WITH_MD5
                                                       = { 0x04,0x00,0x80 };
            V2CipherSpec SSL_IDEA_128_CBC_WITH_MD5     = { 0x05,0x00,0x80 };
            V2CipherSpec SSL_DES_64_CBC_WITH_MD5       = { 0x06,0x00,0x40 };
            V2CipherSpec SSL_DES_192_EDE3_CBC_WITH_MD5 = { 0x07,0x00,0xC0 };
    
       Cipher specifications introduced in version 3.0 can be included in
       version 2.0 client hello messages using the syntax below.  Any
       V2CipherSpec element with its first byte equal to zero will be
       ignored by version 2.0 servers.  Clients sending any of the above
       V2CipherSpecs should also include the version 3.0 equivalent (see
       Appendix A.6):
    
            V2CipherSpec (see Version 3.0 name) = { 0x00, CipherSuite };
    
    E.1.  Version 2 Client Hello
    
       The version 2.0 client hello message is presented below using this
       document's presentation model.  The true definition is still assumed
       to be the SSL version 2.0 specification.
    
    Freier, et al.                  Historic                       [Page 59]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
            uint8 V2CipherSpec[3];
    
            struct {
                unit8 msg_type;
                Version version;
                uint16 cipher_spec_length;
                uint16 session_id_length;
                uint16 challenge_length;
                V2CipherSpec cipher_specs[V2ClientHello.cipher_spec_length];
                opaque session_id[V2ClientHello.session_id_length];
                Random challenge;
            } V2ClientHello;
    
       session msg_type:  This field, in conjunction with the version field,
          identifies a version 2 client hello message.  The value should
          equal one (1).
    
       version:  The highest version of the protocol supported by the client
          (equals ProtocolVersion.version; see Appendix A.1).
    
       cipher_spec_length:  This field is the total length of the field
          cipher_specs.  It cannot be zero and must be a multiple of the
          V2CipherSpec length (3).
    
       session_id_length:  This field must have a value of either zero or
          16.  If zero, the client is creating a new session.  If 16, the
          session_id field will contain the 16 bytes of session
          identification.
    
       challenge_length:  The length in bytes of the client's challenge to
          the server to authenticate itself.  This value must be 32.
    
       cipher_specs:  This is a list of all CipherSpecs the client is
          willing and able to use.  There must be at least one CipherSpec
          acceptable to the server.
    
       session_id:  If this field's length is not zero, it will contain the
          identification for a session that the client wishes to resume.
    
       challenge:  The client's challenge to the server for the server to
          identify itself is a (nearly) arbitrary length random.  The
          version 3.0 server will right justify the challenge data to become
          the ClientHello.random data (padded with leading zeroes, if
          necessary), as specified in this version 3.0 protocol.  If the
          length of the challenge is greater than 32 bytes, then only the
          last 32 bytes are used.  It is legitimate (but not necessary) for
          a V3 server to reject a V2 ClientHello that has fewer than 16
          bytes of challenge data.
    
    Freier, et al.                  Historic                       [Page 60]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Note: Requests to resume an SSL 3.0 session should use an SSL 3.0
       client hello.
    
    E.2.  Avoiding Man-in-the-Middle Version Rollback
    
       When SSL version 3.0 clients fall back to version 2.0 compatibility
       mode, they use special PKCS #1 block formatting.  This is done so
       that version 3.0 servers will reject version 2.0 sessions with
       version 3.0-capable clients.
    
       When version 3.0 clients are in version 2.0 compatibility mode, they
       set the right-hand (least-significant) 8 random bytes of the PKCS
       padding (not including the terminal null of the padding) for the RSA
       encryption of the ENCRYPTED-KEY-DATA field of the CLIENT-MASTER-KEY
       to 0x03 (the other padding bytes are random).  After decrypting the
       ENCRYPTED-KEY-DATA field, servers that support SSL 3.0 should issue
       an error if these eight padding bytes are 0x03.  Version 2.0 servers
       receiving blocks padded in this manner will proceed normally.
    
    Appendix F.  Security Analysis
    
       The SSL protocol is designed to establish a secure connection between
       a client and a server communicating over an insecure channel.  This
       document makes several traditional assumptions, including that
       attackers have substantial computational resources and cannot obtain
       secret information from sources outside the protocol.  Attackers are
       assumed to have the ability to capture, modify, delete, replay, and
       otherwise tamper with messages sent over the communication channel.
       This appendix outlines how SSL has been designed to resist a variety
       of attacks.
    
    F.1.  Handshake Protocol
    
       The handshake protocol is responsible for selecting a CipherSpec and
       generating a MasterSecret, which together comprise the primary
       cryptographic parameters associated with a secure session.  The
       handshake protocol can also optionally authenticate parties who have
       certificates signed by a trusted certificate authority.
    
    F.1.1.  Authentication and Key Exchange
    
       SSL supports three authentication modes: authentication of both
       parties, server authentication with an unauthenticated client, and
       total anonymity.  Whenever the server is authenticated, the channel
       should be secure against man-in-the-middle attacks, but completely
       anonymous sessions are inherently vulnerable to such attacks.
    
    Freier, et al.                  Historic                       [Page 61]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       Anonymous servers cannot authenticate clients, since the client
       signature in the certificate verify message may require a server
       certificate to bind the signature to a particular server.  If the
       server is authenticated, its certificate message must provide a valid
       certificate chain leading to an acceptable certificate authority.
       Similarly, authenticated clients must supply an acceptable
       certificate to the server.  Each party is responsible for verifying
       that the other's certificate is valid and has not expired or been
       revoked.
    
       The general goal of the key exchange process is to create a
       pre_master_secret known to the communicating parties and not to
       attackers.  The pre_master_secret will be used to generate the
       master_secret (see Section 6.1).  The master_secret is required to
       generate the finished messages, encryption keys, and MAC secrets (see
       Sections 5.6.9 and 6.2.2).  By sending a correct finished message,
       parties thus prove that they know the correct pre_master_secret.
    
    F.1.1.1.  Anonymous Key Exchange
    
       Completely anonymous sessions can be established using RSA, Diffie-
       Hellman, or FORTEZZA for key exchange.  With anonymous RSA, the
       client encrypts a pre_master_secret with the server's uncertified
       public key extracted from the server key exchange message.  The
       result is sent in a client key exchange message.  Since eavesdroppers
       do not know the server's private key, it will be infeasible for them
       to decode the pre_master_secret.
    
       With Diffie-Hellman or FORTEZZA, the server's public parameters are
       contained in the server key exchange message and the client's are
       sent in the client key exchange message.  Eavesdroppers who do not
       know the private values should not be able to find the Diffie-Hellman
       result (i.e., the pre_master_secret) or the FORTEZZA token encryption
       key (TEK).
    
       Warning: Completely anonymous connections only provide protection
       against passive eavesdropping.  Unless an independent tamper-proof
       channel is used to verify that the finished messages were not
       replaced by an attacker, server authentication is required in
       environments where active man-in-the-middle attacks are a concern.
    
    F.1.1.2.  RSA Key Exchange and Authentication
    
       With RSA, key exchange and server authentication are combined.  The
       public key either may be contained in the server's certificate or may
       be a temporary RSA key sent in a server key exchange message.  When
       temporary RSA keys are used, they are signed by the server's RSA or
       DSS certificate.  The signature includes the current
    
    Freier, et al.                  Historic                       [Page 62]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       ClientHello.random, so old signatures and temporary keys cannot be
       replayed.  Servers may use a single temporary RSA key for multiple
       negotiation sessions.
    
       Note: The temporary RSA key option is useful if servers need large
       certificates but must comply with government-imposed size limits on
       keys used for key exchange.
    
       After verifying the server's certificate, the client encrypts a
       pre_master_secret with the server's public key.  By successfully
       decoding the pre_master_secret and producing a correct finished
       message, the server demonstrates that it knows the private key
       corresponding to the server certificate.
    
       When RSA is used for key exchange, clients are authenticated using
       the certificate verify message (see Section 5.6.8).  The client signs
       a value derived from the master_secret and all preceding handshake
       messages.  These handshake messages include the server certificate,
       which binds the signature to the server, and ServerHello.random,
       which binds the signature to the current handshake process.
    
    F.1.1.3.  Diffie-Hellman Key Exchange with Authentication
    
       When Diffie-Hellman key exchange is used, the server either can
       supply a certificate containing fixed Diffie-Hellman parameters or
       can use the server key exchange message to send a set of temporary
       Diffie-Hellman parameters signed with a DSS or RSA certificate.
       Temporary parameters are hashed with the hello.random values before
       signing to ensure that attackers do not replay old parameters.  In
       either case, the client can verify the certificate or signature to
       ensure that the parameters belong to the server.
    
       If the client has a certificate containing fixed Diffie-Hellman
       parameters, its certificate contains the information required to
       complete the key exchange.  Note that in this case, the client and
       server will generate the same Diffie-Hellman result (i.e.,
       pre_master_secret) every time they communicate.  To prevent the
       pre_master_secret from staying in memory any longer than necessary,
       it should be converted into the master_secret as soon as possible.
       Client Diffie-Hellman parameters must be compatible with those
       supplied by the server for the key exchange to work.
    
       If the client has a standard DSS or RSA certificate or is
       unauthenticated, it sends a set of temporary parameters to the server
       in the client key exchange message, then optionally uses a
       certificate verify message to authenticate itself.
    
    Freier, et al.                  Historic                       [Page 63]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    F.1.1.4.  FORTEZZA
    
       FORTEZZA's design is classified, but at the protocol level it is
       similar to Diffie-Hellman with fixed public values contained in
       certificates.  The result of the key exchange process is the token
       encryption key (TEK), which is used to wrap data encryption keys,
       client write key, server write key, and master secret encryption key.
       The data encryption keys are not derived from the pre_master_secret
       because unwrapped keys are not accessible outside the token.  The
       encrypted pre_master_secret is sent to the server in a client key
       exchange message.
    
    F.1.2.  Version Rollback Attacks
    
       Because SSL version 3.0 includes substantial improvements over SSL
       version 2.0, attackers may try to make version 3.0-capable clients
       and servers fall back to version 2.0.  This attack is occurring if
       (and only if) two version 3.0-capable parties use an SSL 2.0
       handshake.
    
       Although the solution using non-random PKCS #1 block type 2 message
       padding is inelegant, it provides a reasonably secure way for version
       3.0 servers to detect the attack.  This solution is not secure
       against attackers who can brute force the key and substitute a new
       ENCRYPTED-KEY-DATA message containing the same key (but with normal
       padding) before the application specified wait threshold has expired.
       Parties concerned about attacks of this scale should not be using 40-
       bit encryption keys anyway.  Altering the padding of the least
       significant 8 bytes of the PKCS padding does not impact security,
       since this is essentially equivalent to increasing the input block
       size by 8 bytes.
    
    F.1.3.  Detecting Attacks against the Handshake Protocol
    
       An attacker might try to influence the handshake exchange to make the
       parties select different encryption algorithms than they would
       normally choose.  Because many implementations will support 40-bit
       exportable encryption and some may even support null encryption or
       MAC algorithms, this attack is of particular concern.
    
       For this attack, an attacker must actively change one or more
       handshake messages.  If this occurs, the client and server will
       compute different values for the handshake message hashes.  As a
       result, the parties will not accept each other's finished messages.
       Without the master_secret, the attacker cannot repair the finished
       messages, so the attack will be discovered.
    
    Freier, et al.                  Historic                       [Page 64]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    F.1.4.  Resuming Sessions
    
       When a connection is established by resuming a session, new
       ClientHello.random and ServerHello.random values are hashed with the
       session's master_secret.  Provided that the master_secret has not
       been compromised and that the secure hash operations used to produce
       the encryption keys and MAC secrets are secure, the connection should
       be secure and effectively independent from previous connections.
       Attackers cannot use known encryption keys or MAC secrets to
       compromise the master_secret without breaking the secure hash
       operations (which use both SHA and MD5).
    
       Sessions cannot be resumed unless both the client and server agree.
       If either party suspects that the session may have been compromised,
       or that certificates may have expired or been revoked, it should
       force a full handshake.  An upper limit of 24 hours is suggested for
       session ID lifetimes, since an attacker who obtains a master_secret
       may be able to impersonate the compromised party until the
       corresponding session ID is retired.  Applications that may be run in
       relatively insecure environments should not write session IDs to
       stable storage.
    
    F.1.5.  MD5 and SHA
    
       SSL uses hash functions very conservatively.  Where possible, both
       MD5 and SHA are used in tandem to ensure that non-catastrophic flaws
       in one algorithm will not break the overall protocol.
    
    F.2.  Protecting Application Data
    
       The master_secret is hashed with the ClientHello.random and
       ServerHello.random to produce unique data encryption keys and MAC
       secrets for each connection.  FORTEZZA encryption keys are generated
       by the token, and are not derived from the master_secret.
    
       Outgoing data is protected with a MAC before transmission.  To
       prevent message replay or modification attacks, the MAC is computed
       from the MAC secret, the sequence number, the message length, the
       message contents, and two fixed-character strings.  The message type
       field is necessary to ensure that messages intended for one SSL
       record layer client are not redirected to another.  The sequence
       number ensures that attempts to delete or reorder messages will be
       detected.  Since sequence numbers are 64 bits long, they should never
       overflow.  Messages from one party cannot be inserted into the
       other's output, since they use independent MAC secrets.  Similarly,
       the server-write and client-write keys are independent so stream
       cipher keys are used only once.
    
    Freier, et al.                  Historic                       [Page 65]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
       If an attacker does break an encryption key, all messages encrypted
       with it can be read.  Similarly, compromise of a MAC key can make
       message modification attacks possible.  Because MACs are also
       encrypted, message-alteration attacks generally require breaking the
       encryption algorithm as well as the MAC.
    
       Note: MAC secrets may be larger than encryption keys, so messages can
       remain tamper resistant even if encryption keys are broken.
    
    F.3.  Final Notes
    
       For SSL to be able to provide a secure connection, both the client
       and server systems, keys, and applications must be secure.  In
       addition, the implementation must be free of security errors.
    
       The system is only as strong as the weakest key exchange and
       authentication algorithm supported, and only trustworthy
       cryptographic functions should be used.  Short public keys, 40-bit
       bulk encryption keys, and anonymous servers should be used with great
       caution.  Implementations and users must be careful when deciding
       which certificates and certificate authorities are acceptable; a
       dishonest certificate authority can do tremendous damage.
    
    Appendix G.  Acknowledgements
    
    G.1.  Other Contributors
    
       Martin Abadi                  Robert Relyea
       Digital Equipment Corporation Netscape Communications
                        
    
       Taher Elgamal                 Jim Roskind
       Netscape Communications       Netscape Communications
                 
    
       Anil Gangolli                 Micheal J. Sabin, Ph.D.
       Netscape Communications       Consulting Engineer
                
    
       Kipp E.B. Hickman             Tom Weinstein
       Netscape Communications       Netscape Communications
                    
    
    Freier, et al.                  Historic                       [Page 66]
    RFC 6101              The SSL Protocol Version 3.0           August 2011
    
    G.2.  Early Reviewers
    
       Robert Baldwin                Clyde Monma
       RSA Data Security, Inc.       Bellcore
                      
    
       George Cox                    Eric Murray
       Intel Corporation             
       
    
       Cheri Dowell                  Avi Rubin
       Sun Microsystems              Bellcore
                    
    
       Stuart Haber                  Don Stephenson
       Bellcore                      Sun Microsystems
                  
    
       Burt Kaliski                  Joe Tardo
       RSA Data Security, Inc.       General Magic
                         
    
    Authors' Addresses
    
       Alan O. Freier
       Netscape Communications
    
       Philip Karlton
       Netscape Communications
    
       Paul C. Kocher
       Independent Consultant
    
    Freier, et al.                  Historic                       [Page 67]
    

    What works in conjunction with a Secure Sockets Layer?

    Hypertext Transfer Protocol Secure (https) is a combination of the Hypertext Transfer Protocol (HTTP) with the Secure Socket Layer (SSL)/Transport Layer Security (TLS) protocol. TLS is an authentication and security protocol widely implemented in browsers and Web servers.

    What method does SSL use to keep the transmission secure?

    It uses encryption algorithms to scramble data in transit, preventing hackers from reading it as it is sent over the connection. This information could be anything sensitive or personal which can include credit card numbers and other financial information, names and addresses.

    What SSL TLS encryption is used to protect data in transit?

    SSL/TLS uses both asymmetric and symmetric encryption to protect the confidentiality and integrity of data-in-transit. Asymmetric encryption is used to establish a secure session between a client and a server, and symmetric encryption is used to exchange data within the secured session.

    What is Secure Socket Layer SSL and how is it achieved?

    Definition: Secure Sockets Layer (SSL) is a protocol developed by Netscape for establishing an encrypted link between a web server and a browser. SSL is an industry standard which transmits private data securely over the Internet by encrypting it.