What is the effect of oxidized low-density lipoproteins (LDLs in atherosclerosis)

Abstract

Malondialdehyde (MDA)-modified and oxidized low density lipoproteins (LDL) have been demonstrated in atherosclerotic lesions. Elevated titers of autoimmune antibodies specific for MDA-modified LDL predicted the progression of carotid atherosclerosis and of myocardial infarction. Recently, elevated levels of MDA-modified LDL were detected in the plasma of patients with ischemic heart disease, whereas, elevated levels of oxidized LDL were detected in the plasma of patients with ischemic heart disease and of heart transplant patients with post-transplant cardiovascular disease. Although increased levels of autoimmune antibodies against oxidatively modified LDL and increased levels of oxidized LDL antigen appear to be associated with atherosclerotic cardiovascular disease, there is to date no direct proof of the causal role of oxidized LDL in atherothrombosis. However, the decreased risk of cardiovascular disease associated with the administration of antioxidants (e.g. vitamin E), estrogen supplementation and increased levels of high density lipoproteins (HDL) may, at least partially, be due to the inhibition of oxidation of LDL or to the reversal of the atherothrombotic effects of oxidized LDL.

Keywords

  • Atherosclerosis
  • Lipoproteins
  • Malondialdehyde

To read this article in full you will need to make a payment

References

    • Gerrity RG

    The role of the monocyte in atherogenesis. I. Transition of blood-borne monocytes into foam cells in fatty lesions.

    Am J Pathol. 1981; 103: 181-190
    • Schaffner T
    • Taylor K
    • Bartucci EJ
    • Fischer-Dzoga K
    • Beeson JH
    • Glagov S
    • Wissler RW

    Arterial foam cells with distinctive immunomorphologic and histochemical features of macrophages.

    Am J Pathol. 1980; 100: 7-80
    • Brown MS
    • Goldstein JL.

    Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis.

    Annu Rev Biochem. 1983; 52: 223-261
    • Ross R.

    The pathogenesis of atherosclerosis: an update.

    New Engl J Med. 1986; 314: 488-500
    • Ross R.

    The pathogenesis of atherosclerosis: an update: a perspective for the 1990’s.

    Nature. 1993; 362: 801-809
    • Davies MJ
    • Richardson PD
    • Woolf N
    • Katz DR
    • Mann J.

    Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage and smooth muscle cell content.

    Br Heart J. 1993; 69: 377-381
    • Zeiher AM
    • Schachlinger V
    • Hohnloser SH
    • Saurbier B
    • Just H.

    Coronary atherosclerotic wall thickening and vascular reactivity in humans. Elevated high-density lipoprotein levels ameliorate abnormal vasoconstriction in early atherosclerosis.

    Circulation. 1994; 89: 2525-2532
    • Haberland ME
    • Fong D
    • Cheng L.

    Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits.

    Science. 1988; 241: 215-218
    • Ylä-Herttuala S
    • Palinski W
    • Rosenfeld ME
    • Parthasarathy S
    • Carew TE
    • Butler JS
    • Witztum L
    • Steinberg D.

    Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man.

    J Clin Invest. 1989; 84: 1086-1095
    • Holvoet P
    • Perez G
    • Bernar H
    • Brouwers E
    • Vanloo B
    • Rosseneu M
    • Collen D.

    Stimulation with a monoclonal antibody (mAb-4E4) of scavenger receptor-mediated uptake of chemically modified low density lipoproteins by THP-1-derived macrophages enhances foam cell generation.

    J Clin Invest. 1994; 93: 89-98
    • Holvoet P
    • Collen D.

    VLDL hypercholesterolemia relative to LDL hypercholesterolemia is associated with higher levels of oxidized lipoproteins and a more rapid progression of coronary atherosclerosis in rabbits.

    Arterioscler Thromb Vasc Biol. 1997; 17: 2376-2382
    • Stemme S
    • Faber B
    • Holm J
    • Wiklund O
    • Witztum JL
    • Hansson GK.

    T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein.

    Proc Natl Acad Sci USA. 1995; 92: 3893-3897
    • Shimano H
    • Yamada N
    • Ishibashi S
    • Mokuno H
    • Mori N
    • Gotoda T
    • Harada K
    • Akanuma Y
    • Murase T
    • Yazaki Y
    • Takaku F.

    Oxidation-labile subfraction of human low density lipoprotein isolated by ion-exchange chromatography.

    J Lipid Res. 1991; 32: 763-773
    • Berliner JA
    • Territo MC
    • Sevanian A
    • Ramin S
    • Kim JA
    • Bamshad B
    • Esterson M
    • Fogelmann AM.

    Minimally modified low density lipoprotein stimulates monocyte endothelial interactions.

    J Clin Invest. 1990; 85: 1260-1266
    • Chait A
    • Brazg RL
    • Tribble DL
    • Krauss RM.

    Susceptibility of small, dense, low density lipoproteins to oxidative modification in subjects with the atherogenic lipoprotein phenotype, pattern B.

    Am J Med. 1993; 94: 350-356
    • Dejager S
    • Bruckert E
    • Chapman MJ.

    Dense low density lipoprotein subspecies with diminished oxidative resistance predominate in combined hyperlipidemia.

    J Lipid Res. 1993; 34: 295-308
    • Van Berkel TJ
    • De Rijke YB
    • Kruijt JK.

    Different fate of oxidatively modified low density lipoprotein and acetylated low density lipoprotein in rats. Recognition by various scavenger receptors on Kupffer and endothelial liver cells.

    J Biol Chem. 1991; 266: 2282-2289
    • Iuliano L
    • Signore A
    • Vallabajosula S
    • Colavita AR
    • Camastra C
    • Ronga G
    • Alessandri C
    • Sbarigia E
    • Fiorani P
    • Violi F.

    Preparation and biodistribution of 99tm labelled oxidized LDL in man.

    Atherosclerosis. 1996; 126: 131-141
    • Holvoet P
    • Donck J
    • Landeloos M
    • Brouwers E
    • Luijtens K
    • Arnout J
    • Lesaffre E
    • Vanrenterghem Y
    • Collen D.

    Correlation between oxidized low density lipoproteins and von Willebrand factor in chronic renal failure.

    Thromb Haemost. 1996; 76: 663-669
    • Holvoet P
    • Stassen JM
    • Van Cleemput J
    • Collen D
    • Vanhaecke J

    Oxidized low density lipoproteins in patients with transplant-associated coronary artery disease.

    Arterioscler Thromb Vasc Biol. 1998; 18: 100-107
    • Holvoet P
    • Perez G
    • Zhao Z
    • Brouwers E
    • Bernar H
    • Collen D.

    Malondialdehyde-modified low density lipoproteins in patients with atherosclerotic disease.

    J Clin Invest. 1995; 95: 2611-2619
    • Rimm EB
    • Stampfer MJ
    • Ascherio A
    • Giovannucci E
    • Colditz GA
    • Willett WC.

    Vitamin E consumption and the risk of coronary heart disease in men.

    New Engl J Med. 1993; 328: 1450-1456
    • Stampfer MJ
    • Hennekens CH
    • Manson JE
    • Colditz GA
    • Rosner B
    • Willet WC.

    Vitamin E consumption and the risk of coronary disease in women.

    New Engl J Med. 1993; 328: 1444-1449
    • Kushi LH
    • Folsom AR
    • Prineas RJ
    • Mink PJ
    • Wu Y
    • Bostick RM.

    Dietary antioxidant vitamins and death from coronary heart disease in postmenopausal women.

    New Engl J Med. 1996; 334: 1156-1162
    • Stephens NG
    • Parsons A
    • Schofield PM
    • Kelly F
    • Cheeseman K
    • Mitchinson MJ.

    Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS).

    Lancet. 1996; 347: 781-786
    • Hodis HN
    • Mack WJ
    • LaBree L
    • Cashin-Hemphill L
    • Sevanian A
    • Johnson R
    • Azen SP.

    Serial coronary angiographic evidence that antioxidant vitamin intake reduces progression of coronary artery atherosclerosis.

    J Am Med Assoc. 1995; 273: 1849-1854
    • Raal FJ
    • Areias AJ
    • Pilcher GJ
    • Joffe BI
    • Seftel HC.

    Lack of effect of high dose vitamin E on xanthoma regression in homozygous familial hypercholesterolemia.

    Atherosclerosis. 1994; 107: 213-219
    • Walldius G
    • Erikson U
    • Olsson AG
    • Bergstrand L
    • Hådel K
    • Johansson J
    • Kaijser L
    • Lassvik C
    • Mölgaard J
    • Nilsson S
    • Scäfter-Elinder L
    • Stenport G
    • Holme I.

    The effect of probucol on femoral atherosclerosis: the Probucol Quantitative Regression Swedish Trial (PQRST).

    Am J Cardiol. 1994; 74: 875-883
    • Jialal I
    • Grundy SM.

    Preservation of the endogenous antioxidants in low density lipoprotein by ascorbate but not probucol during oxidative modification.

    J Clin Invest. 1991; 87: 597-601
    • Johansson J
    • Olsson AG
    • Bergstrand L
    • Elinder LS
    • Nilsson S
    • Erikson U
    • Molgaard J
    • Holme I
    • Walldius G.

    Lowering of HDL2b by probucol partly explains the failure of the drug to affect femoral atherosclerosis in subjects with hypercholesterolemia: a Probucol Quantitative Regression Swedish Trial (PSRST) Report.

    Arterioscler Thromb Vascular Biol. 1995; 15: 1049-1056
    • Salonen R
    • Nyssonen K
    • Porkkala-Sarataho E
    • Salonen JT.

    The Kuopio Atherosclerosis Prevention Study (KAPS): effect of pravastatin treatment on lipids, oxidation resistance of lipoproteins and atherosclerotic progression.

    Am J Cardiol. 1995; 76: 34C-39
    • Reaven P
    • Parthasarathy S
    • Grasse BJ
    • Miller E
    • Almazan F
    • Mattson FH
    • Khoo JC
    • Steinberg D
    • Witztum JL.

    Feasibility of using an oleate-rich diet to reduce the susceptibility of low density lipoprotein to oxidative modification in humans.

    Am J Clin Nutr. 1991; 54: 701-706
    • Hertog MG
    • Feskens EJ
    • Hollman PC
    • Katan MB
    • Kromhout D.

    Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study.

    Lancet. 1993; 342: 1007-1011
    • Bourassa PA
    • Milos PM
    • Gaynor BJ
    • Breslow JL
    • Aiello RJ.

    Estrogen reduces atherosclerotic lesion development in apo E deficient mice.

    Proc Natl Acad Sci USA. 1996; 93: 10022-10027
    • Hanke H
    • Hanke S
    • Finking G
    • Muhic-Lohrer A
    • Muck AO
    • Schmahl FW
    • Haasis R
    • Hombach V.

    Different effects of estrogen and progesterone on experimental atherosclerosis in female versus male rabbits. Quantification of cellular proliferation by bromodeoxyuridine.

    Circulation. 1996; 94: 175-181
    • Vyas S
    • Gangar K.

    Postmenopausal oestrogens and arteries.

    Br J Obstet Gynaecol. 1995; 102: 942-946
    • Espeland MA
    • Applegate W
    • Furberg CD
    • Lefkowitz D
    • Rice L
    • Hunninghake D.

    Estrogen replacement therapy and progression of intimal-medial thickness in the carotid arteries of postmenopausal women: ACAPS Investigators. Asymptomatic Carotid Atherosclerosis Progression Study.

    Am J Epidemiol. 1995; 142: 1011-1019
    • Knopp RH
    • Zhu X
    • Bonet B.

    Effects of estrogens on lipoprotein metabolism and cardiovascular disease in women.

    Atherosclerosis. 1994; 110: S83-S91
    • Carlsten H
    • Verdrengh M
    • Taube M.

    Additive effects of suboptimal doses of estrogen and cortisone on the suppression of T lymphocyte dependent inflammatory responses in mice.

    Inflamm Res. 1996; 45: 26-30
    • Shanker G
    • Sorci-Thomas M
    • Adams MR.

    Estrogen modulates the inducible expression of platelet-derived growth factor mRNA by monocyte/macrophages.

    Life Sci. 1995; 56: 499-507
    • Espinosa E
    • Oemar BS
    • Luscher TF.

    17-β-Estradiol and smooth muscle cell proliferation in aortic cells of male and female rats.

    Biochem Biophys Res Commun. 1996; 221: 8-14
    • Shahar E
    • Folsom AR
    • Salomaa VV
    • Stinson VL
    • McGovern PG
    • Shimakawa T
    • Chambless LE
    • Wu KK.

    Relation of hormone-replacement thrapy to measures of plasma fibrinolytic activity. Atherosclerosis Risk in Communities (ARIC) Study Investigators.

    Circulation. 1996; 93: 1970-1975
    • Mackness MI
    • Arrol S
    • Abbott C
    • Durrington PN.

    Protection of low density lipoprotein against oxidative modification by high density lipoprotein associated paraoxonase.

    Atherosclerosis. 1993; 104: 129-135
    • Mackness MI
    • Arrol S
    • Durrington PN.

    Paraoxonase prevents accumulation of lipoperoxides in low density lipoprotein.

    FEBS Lett. 1991; 286: 152-154
    • Mackness MI
    • Durrington PN.

    HDL, its enzymes and its potential to influence lipid peroxidation.

    Atherosclerosis. 1995; 115: 243-253
    • Watson AD
    • Navab M
    • Hama SY
    • Sevanian A
    • Prescott SM
    • Stafforini DM
    • McIntyre TM
    • Du BN
    • Fogelman AM
    • Berliner JA.

    Effect of platelet activating factor-acetylhydrolase on the formation and action of minimally oxidized low density lipoprotein.

    J Clin Invest. 1995; 95: 774-782
    • Ambrosio G
    • Oriente A
    • Napoli C
    • Palumbo G
    • Chiariello P
    • Marone G
    • Condorelli M
    • Chiariello M
    • Triggiani M.

    Oxygen radicals inhibit human plasma acetylhydrolase, the enzyme that catabolizes platelet-activating factor.

    J Clin Invest. 1994; 93: 2408-2416
    • Sugatani J
    • Miwa M
    • Komiyama Y
    • Ito S.

    High density lipoprotein inhibits the synthesis of platelet-activating factor in human vascular endothelial cells.

    J Lipid Mediators Cell Signal. 1996; 13: 73-88
    • Bowry VW
    • Stanley KK
    • Stocker R.

    High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors.

    Proc Natl Acad Sci USA. 1992; 89: 10316-10320
    • Maier JA
    • Barenghi L
    • Pagani F
    • Bradamante S
    • Comi P
    • Ragnotti G.

    The protective role of high density lipoprotein on oxidized low density lipoprotein induced U937/endothelial cell interactions.

    Eur J Biochem. 1994; 221: 35-41
    • Cockerill GW
    • Rye KA
    • Gamble JR
    • Vadas MA
    • Barter PJ.

    High density lipoproteins inhibit cytokine-induced expression of endothelial cell adhesion molecules.

    Arterioscler Thromb Vasc Biol. 1995; 15: 1987-1994
    • Matsuda Y
    • Hirata K
    • Inoue N
    • Suematsu M
    • Kawashima S
    • Akita H
    • Yokoyama M.

    High density lipoprotein reverses inhibitory effect of oxidized low density lipoprotein on endothelium-dependent arterial relaxation.

    Circulation Res. 1993; 72: 1103-1109
    • Galle J
    • Ochslen M
    • Schollmeyer P
    • Wanner C.

    Oxidized lipoproteins inhibit endothelium-dependent vasodilation. Effects of pressure and high density lipoprotein.

    Hypertension. 1994; 23: 556-564
    • Rubba P
    • Mancini M.

    Lipid-lowering treatment: effects on endothelial dysfunction.

    Curr Opin Lipidol. 1995; 6: 348-353
    • Violaris AG
    • Melkert R
    • Serruys PW.

    Influence of serum cholesterol and cholesterol subfractions on restenosis after successful coronary angioplasty. A quantitative angiographic analysis of 3336 lesions.

    Circulation. 1994; 90: 2267-2279
    • Weintraub WS
    • Boccuzzi SJ
    • Klein JL
    • Kosinki AS
    • King III, SB
    • Ivanhoe R
    • Cedarholm JC
    • Stillabower ME
    • Talley JD
    • DeMaio SJ
    • et al.

    Lack of effect of lovastatin on restenosis after coronary angioplasty. Lovastatin Restenosis Trial Study Group.

    New Engl J Med. 1994; 331: 1331-1337
    • Shah PK
    • Amin J.

    Low high density lipoprotein level is associated with increased restenosis rate after coronary angioplasty.

    Circulation. 1992; 85: 1279-1285
    • Ishiwata S
    • Nakanishi S
    • Nishiyama S
    • Seki A.

    Prevention of restenosis by bezafibrate after successful coronary angioplasty.

    Coron Artery Dis. 1995; 6: 883-889
    • Murugesan G
    • Sa G
    • Fox PL.

    High density lipoprotein stimulates endothelial cell movement by a mechanism distinct from basic fibroblast growth factor.

    Circulation Res. 1994; 74: 1149-1156
    • Tamagaki T
    • Sawada S
    • Imamura H
    • Tada Y
    • Yamasaki S
    • Toratani A
    • Sato T
    • Komatsu S
    • Akamatsu N
    • Yamagami M
    • Kobayashi K
    • Kato K
    • Yamamoto K
    • Shirai K
    • Yamada K
    • Higaki KT
    • Nakagawa T
    • Tsuji H
    • Nakagawa M.

    Effects of high density on intracellular pH and proliferation of human vascular endothelial cells.

    Atherosclerosis. 1996; 123: 73-82
    • Wu KK
    • Thiagarajan P.

    Role of endothelium in thrombosis and hemostasis.

    Annu Rev Med. 1996; 47: 315-331

Article Info

Identification

DOI: https://doi.org/10.1016/S0021-9150(97)00305-5

Copyright

© 1998 Elsevier Science Ireland Ltd. Published by Elsevier Inc. All rights reserved.

ScienceDirect

Access this article on ScienceDirect

How does oxidized LDL cause atherosclerosis?

LDL is thought to be oxidized within the extracellular space of atherosclerotic lesions and then to be bound by scavenger receptors and taken up by macrophages, which become cholesterol-laden foam cells, a major feature of atherosclerotic lesions.

What is a consequence of the oxidation of low density lipoproteins LDLs?

Oxidized LDL (oxLDL) represents a variety of modification of both lipid and apolipoprotein B (apoB) components by lipid peroxidation. This promotes atherosclerosis through inflammatory and immunologic mechanisms that lead to the formation of macrophage foam cells.

What happens when LDLs are oxidized?

Oxidized LDL triggers inflammation leading to the formation of plaque in the arteries, also known as atherosclerosis. Oxidized LDL may also play a role in increasing the amount of triglycerides the body produces, as well as increasing the amount of fat deposited by the body.