Welchen weg nimmt das wasser in der pflanze arbeitsblatt

Die Leitung des Wassers in der Sprossachse

Die Versorgung der oberirdischen Pflanzenteile mit dem von den Wurzeln aufgenommenen Wasser und den darin gelösten Mineralsalzen gehört zu den wichtigsten Lebensprozessen der Pflanzen. Die Pflanzen leisten dabei Erstaunliches, denn das Wasser muss entgegen der Schwerkraft, z. B. bei Bäumen, in oft beträchtliche Höhen (Ferntransport) und in großen Mengen transportiert werden. Anders als bei den Tieren, deren Blutkreislauf durch ein pumpendes Herz angetrieben wird, stehen den Pflanzen für den Wassertransport keine Flüssigkeitspumpen zur Verfügung.

Der Wassertransport in den Gefäßen der Leitbündel ist von den Pflanzen kein aktiv geförderter Prozess. Er beruht auf rein physikalischen Gesetzmäßigkeiten. Das Wasser gelangt von den Wurzelhaaren bis in die Gefäße durch Diffusion und Osmose. Der Transport des Wassers in den Gefäßen der Sprossachse bis in die Laubblätter erfolgt durch andere physikalische Vorgänge. Um diese Vorgänge zu erkunden, gibt es eine einfache Untersuchung. Wenn man ein Glasgefäß mit Wasser füllt, das aus Röhren mit unterschiedlichem Durchmesser besteht, die miteinander verbunden sind, so stellt man fest, dass das Wasser in den sehr engen Röhren (als Kapillaren bezeichnet) höher als in den weiten Röhren steigt. Ursache dafür ist das Wirken von Anziehungskräften zwischen den Teilchen des Wassers und des Glases.
Die Anziehungskräfte zwischen den Teilchen verschiedener Körper werden als Adhäsionskräfte bezeichnet.

Adhäsionskräfte bewirken z. B. das Haften von Kreide an der Tafel, von Farben an Wänden und auf Bildern. Auch die Wirkungsweise aller Klebstoffe basiert auf Adhäsion. In den Gefäßen wirkt die Adhäsion ebenfalls.
Adhäsion ist in den Gefäßzellen das Anheftungsvermögen der Teilchen verschiedener Stoffe an die Gefäßwand. Betrachtet man die Gefäßzellen verschiedener Pflanzen, so erkennt man, dass ihr Durchmesser je nach Pflanzenart 40 bis 700 mm beträgt. Die Gefäßzellen wirken wie Kapillarsysteme, in denen das Wasser aufsteigt. Mithilfe dieser Kapillarkräfte kann das Wasser in den Gefäßen des Leitbündels etwa 4 bis 7 cm aufsteigen. Das bedeutet, dass die in den Gefäßzellen (als Kapillaren gekennzeichnet) wirkenden Adhäsionskräfte zwar den Wassertransport erleichtern, sie können aber nicht die einzigen Kräfte sein, die ihn bewirken. Für die Erzeugung des Wasserstroms in den Gefäßzellen des Leitbündels gibt es theoretisch zwei Möglichkeiten: einmal durch die Erzeugung eines Drucks von der Wurzel her und zum anderen durch die Entwicklung eines Sogs an der Sprossspitze. Im ersten Fall wird das Wasser in den Leitgefäßen von der Wurzel her „geschoben“ und im zweiten Fall von den Blättern her „gezogen“. Beide Möglichkeiten sind in der Pflanze verwirklicht.
Der Wurzeldruck lässt sich auch an intakten Pflanzen beobachten. An warmen Tagen kann man in den frühen Morgenstunden bei jungen Graspflanzen, aber auch an den Blattspitzen des Springkrauts, Schöllkrauts, Salats, der Kresse, der Erdbeere usw. sehen, dass an ihnen Wassertröpfchen geradezu herausquellen.
Der Wurzeldruck wird durch die osmotischen Vorgänge der Wasseraufnahme durch die Wurzelhaare erzeugt und beruht somit auf physikalischen Gesetzmäßigkeiten.

Inhalt

  • Wassertransport in der Pflanze – Biologie
  • Auf welche Weise nehmen Pflanzen Wasser auf?
    • Die Wasseraufnahme in den Wurzeln
    • Symplastische Wasseraufnahme
    • Apoplastische Wasseraufnahme
  • Der Ionenhaushalt in den Pflanzen
  • Wie wird das Wasser in der Sprossachse transportiert?
  • Das Wasser in den Blättern
  • Wie kommt das Wasser zu den Blättern?
  • Welche Kräfte wirken beim Wassertransport in der Pflanze?
  • Der Wassertransport in den Pflanzen kurz zusammengefasst

Wassertransport in der Pflanze – Biologie

Oh nein, die Pflanzen im Klassenzimmer lassen die Blätter und Köpfe hängen. Schnell, sie brauchen Wasser! Nach einiger Zeit müssten sie wieder schön sein. Aber wieso?

Auf welche Weise nehmen Pflanzen Wasser auf?

Pflanzen nehmen das Wasser aus dem Boden über die Wurzeln auf. Im Boden wird Wasser gespeichert. Dabei unterscheiden wir zuerst beim Bodenwasser zwischen zwei Arten, dem Kapillarwasser und dem Hydratwasser.

Das Kapillarwasser oder auch Haftwasser genannt, befindet sich zwischen dem Bodensubstrat. Das Substrat hält es durch Kohäsion und Adhäsion in den Hohlräumen fest und steht in Verbindung mit dem Grundwasser.

Beim Hydratwasser oder auch Kristallwasser sind die Wassermoleküle direkt an das Substrat gebunden und dienen als Speicher. Die Pflanzen nutzen beides, bevorzugen aber das Kapillarwasser.

Die Wasseraufnahme in den Wurzeln

Wurzeln haben zwei Methoden der Wasseraufnahme, die symplastische und die apoplastische.

Symplastische Wasseraufnahme

Bei der symplastischen Aufnahme nehmen die Haarzellen Wasser auf, durch Osmose gelangt es weiter über die Protoplasten, durch die Endodermis bis in die Tracheen des Zentralzylinders.

Apoplastische Wasseraufnahme

Die apoplastische Aufnahme unterscheidet sich nur zu Beginn von der symplastischen Wasseraufnahme. Durch Diffusion dringt das Wasser in die Zwischenräume der Protoplasten, bis es den Casparischen Streifen erreicht, welcher eine Wasserbarriere darstellt. Hier erfolgt ein Eindringen in die Protoplasten, um die Wasserbarriere zu durchdringen. Das Wasser kann nun in die Endodermis und weiter zum Zentralzylinder vordringen.

Der Ionenhaushalt in den Pflanzen

Wurzeln nehmen die im Boden gelösten Ionen durch einen Ionenaustausch auf. Zum Beispiel werden Wasserstoffionen und Hydrogencarbonat an den Boden abgegeben und Kaliumionen und Phosphate aus dem Boden aufgenommen. Es bildet sich ein Gleichgewicht. Für den Weg der Ionen durch die Protoplasten bis in die Tracheen müssen Wurzeln Energie in Form von ATP aufwenden. Dort werden die Ionen dann mit dem Wasser weitertransportiert.

Wie wird das Wasser in der Sprossachse transportiert?

In den Wurzeln wandert das aufgenommene Wasser in die Leitgefäße des Zentralzylinders. Dort gelangt es weiter bis in den Spross. Über die Leitgefäße, genauer gesagt über das Xylem, wird das Wasser bis in den oberen Bereich der Pflanze transportiert. Das Xylem besteht aus abgestorbenen, plasmafreien Zellen. So gelangt das Wasser ohne Widerstand bis in die Blätter.

Das Wasser in den Blättern

Die Blätter verwenden das Wasser für verschiedene Funktionen. Es wird bei der Fotosynthese, in weiteren Stoffwechselvorgängen und beim Stabilisieren des Zellinnendrucks eingesetzt. Der Großteil des Wassers befindet sich jedoch in den Interzellularen (Hohlräume zwischen benachbarten Zellen).

Da die Umgebungsluft einen geringeren Wassergehalt besitzt als die Blätter, kommt es zur Verdunstung über die Spaltöffnungen, welche auch Stomata genannt werden. Diese Verdunstung wird Transpiration genannt und führt zu einem ständigen Nachfließen des Wassers in den Pflanzen.

Wie kommt das Wasser zu den Blättern?

Die Transpiration verursacht einen Transpirationssog. Dies bedeutet, das verdunstende Wasser zieht weiteres Wasser durch Kohäsion aus den Zweigen in die Blätter, dies setzt sich fort bis in die Wurzeln. Vergleichbar mit dem Trinken durch den Strohhalm. Das Ansaugen mit dem Mund verursacht einen Unterdruck im Strohhalm, sodass die Flüssigkeit hindurchgesogen wird. Der Transpirationssog ist so kräftig, dass Wasser in bis zu $\pu{120 m}$ hohe Baumspitzen gelangt, wie zum Beispiel bei Mammutbäumen.

Welche Kräfte wirken beim Wassertransport in der Pflanze?

Neben dem Transpirationssog greifen die Pflanzen auf zwei weitere Kräfte zurück. Der Wurzeldruck transportiert das Wasser durch Überdruck bis auf etwa $\pu{10 m}$ Höhe und die Kapillarkräfte zwischen den Zellen leiten das Wasser ungefähr $\pu{1 m}$ in die Sprosshöhe. Trotz der geringeren Leistungsfähigkeit beim Wurzeldruck und den Kapillarkräften sind sie besonders im Winter und Frühling wichtig. Zu diesen Jahreszeiten fehlen die Blätter, somit kommt es dann nicht zu einem Transpirationssog für den Wassertransport.

Der Wassertransport in den Pflanzen kurz zusammengefasst

Pflanzen nehmen das Wasser über die Wurzeln auf. Dafür werden zwei Methoden verwendet, die symplastische und die apoplastische Aufnahme. In der Wurzel wird das Wasser bis in die Leitgefäße transportiert. Von dort gelangt es über das Xylem im Spross bis in die Blätter. Die Blätter geben durch Transpiration Wasser an die Luft ab. Der entstehende Transpirationssog bewirkt, dass das Wasser bis in die Baumspitze gelangt. Weitere transportunterstützende Kräfte sind der Wurzeldruck und die Kapillarkräfte. Neben dem Wasser nehmen die Wurzeln auch Ionen aus dem Boden mit auf.

Zu diesem Thema gibt es noch ein weiteres interessantes Video, Wasseraufnahme und -transport. Falls du dich nochmals über Osmose und Diffusion informieren möchtest, kannst du dir das Video Diffusion und Osmose anschauen.

Mit den Arbeitsblättern zum Thema Wassertransport in der Pflanze kannst du dein neu erworbenes Wissen testen. Nutze auch die Übungen, um dich auf die nächste Klassenarbeit vorzubereiten. Viel Spaß!

Welchen Weg nimmt das Wasser in die Pflanze?

Der Wassertransport in Pflanzen ist ein Prozess, bei dem Pflanzen über ihre Wurzeln Wasser und Mineralstoffe aufnehmen, über die Leitgefäße im Xylem weiterleiten und das Wasser durch Transpiration über die Schließzellen an der Unterseite der Blätter als Dampf abgeben.

Wo nimmt die Pflanze Wasser auf?

Pflanzen nehmen das Wasser über die Wurzeln auf. Dafür werden zwei Methoden verwendet, die symplastische und die apoplastische Aufnahme. In der Wurzel wird das Wasser bis in die Leitgefäße transportiert. Von dort gelangt es über das Xylem im Spross bis in die Blätter.

Wie funktioniert die Wasseraufnahme bei Pflanzen?

Die Wasseraufnahme der Pflanzen erfolgt durch die Wurzelhaarzellen. Sie beruht auf den physikalischen Gesetzmäßigkeiten der Diffusion und Osmose. Der Wassertransport innerhalb der Pflanze ist kein von der Pflanze aktiv geförderter Prozess.

Was passiert mit dem Wasser in der Pflanze?

Bäume und andere Pflanzen nehmen Wasser an den Wurzeln auf und leiten es durch feine Äderchen (Xylem) nach oben zu den Blättern. An den Blättern tritt das Wasser aus und verdunstet (Transpiration). 95% des aufgenommenen Wassers gelangt so vom Boden, durch die Bäume zurück in die Atmosphäre.