A hoch x gleich b

3. Fall: Brüche in Exponentialfunktionen

Leider bleiben die Aufgaben nicht immer so einfach. Um folgende Aufgabe zu lösen, brauchst du mehr Übung:

$\frac{4}{3^{2x}} - \frac{2}{3^x} = 0$

Die Variablen müssen zunächst voneinander getrennt werden, indem man $\frac{2}{3^x}$ auf beiden Seiten addiert:

$\frac{4}{3^{2x}} - \frac{2}{3^x} = 0~~~~~| +\frac{2}{3^x}$

$\frac{4}{3^{2x}} = \frac{2}{3^x}$

Die unbekannte Variable befindet sich in diesem Beispiel nicht nur im Exponenten, sondern auch noch im Nenner eines Bruches, was die Isolierung deutlich schwieriger macht. Als erstes muss der Exponent also aus dem Bruch herausgeholt werden. Dazu multiplizieren wir beide Seiten mit dem Hauptnenner $3^{2x}$

Gut zu wissen

Hinweis

Hier klicken zum Ausklappen

Hauptnenner: Kleinstes gemeinsames Vielfaches der Nenner mehrerer Brüche.

$\frac{4}{3^{2x}} = \frac{2}{3^x}$   | $\cdot 3^{2x}$

$\frac{4\cdot 3^{2x}}{3^{2x}} = \frac{2\cdot 3^{2x} }{3^x}$

Wir haben gelernt, dass man diese Potenz $3^{2x}$ auch so schreiben kann:$3^x \cdot 3^x$. Setzt man diese alternative Schreibweise nun in unsere Gleichung ein, lässt sich der Bruch kürzen:

$\frac{4\cdot 3^{2x}}{3^{2x}} = \frac{2\cdot 3^x \cdot 3^x }{3^x}$

$4 =  2\cdot 3^x $

Jetzt kannst du so verfahren, wie schon bei den anderen beiden Aufgaben: Variablen separieren, logarithmieren, drittes Logarithmusgesetz anwenden und ausrechnen:

$4 =  2\cdot 3^x $   | $:2$

$\frac{4}{2} = 3^x$   |$lg$

$\lg_{}(\frac{4}{2}) = \lg_{}(3^x)$   |$3. LG$

$\lg_{}(\frac{4}{2}) = x\cdot \lg_{}(3)$   |$: \lg_{}(3)$

$\frac{\lg_{}(\frac{4}{2})}{\lg_{}(3)} = x$

$x \approx 0,63$

Regeln zum Lösen von Exponentialgleichungen

Wie du siehst, können die Aufgaben auch sehr schwierig werden. Dabei bleiben die Grundschritte aber immer dieselben. Zunächst muss die unbekannte Variable auf eine Seite gebracht werden. Dieser Schritt kann mal einfacher oder mal schwieriger sein. Danach wird die unbekannte Variable isoliert, logarithmiert und das dritte Logarithmusgesetz angewendet. Du stößt beim Lösen einer Exponentialgleichung immer wieder auf einen solchen Ausdruck: $\frac{\lg_{}(a)}{\lg _{}(b)} = x$

Bist du an dieser Stelle erst einmal angekommen, musst du nur noch das Ergebnis mit Hilfe des Taschenrechners ausrechnen.

Merke

Merke

Hier klicken zum Ausklappen

  1. Variable auf eine Seite der Gleichung bringen.
  2. Isolierung der Variable.
  3. Logarithmieren.
  4. Anwendung des 3. Logarithmusgesetzes.

Nun weißt du, wie man Exponentialgleichungen mithilfe von Logarithmusgesetzen lösen kann. Vertiefe dein neues Wissen in unseren Übungen. Dabei wünschen wir dir viel Spaß und Erfolg!

Mit Exponentialgleichungen befassen wir uns in diesem Artikel. Dabei erklären wir euch, was eine Exponentialgleichung eigentlich ist und wie man sie löst. Dieser Artikel gehört zum Bereich Mathematik.

A hoch x gleich b

Zum besseren Einstieg in das Gebiet der Exponentialgleichungen findet ihr hier nun ein paar einleitende Worte: Die meisten von euch mussten sicher schon Gleichungen oder sogar ganze Gleichungssysteme lösen. Dabei hatte man z.B. eine Gleichung der Form 2 + 5x = 0 nach x aufzulösen. Dies wurde durch Addition, Subtraktion, Multiplikation und Division gelöst. Aber angenommen, ihr sollt nun  y = 2x nach x auflösen. Was dann? Die Lösung lautet: Logarithmus anwenden. Genau darum kümmern wir uns in diesem Abschnitt. Doch zuvor solltet ihr sicherstellen, dass ihr die folgenden Themen kennt. Wer mit diesen noch Probleme hat, folgt den Links. Alle anderen können gleich mit den Exponentialgleichungen loslegen.

  • Potenzen
  • Gleichungen lösen
  • Exponentialfunktionen

Exponentialgleichungen durch Logarithmus lösen

Im nun Folgenden möchten wir euch einige Rechenbeispiele zeigen, wie man durch Einsatz des Logarithmus nach einer Variablen - die im Exponenten steht - auflöst. Unterhalb des jeweiligen Beispiels findet ihr die jeweilige Erklärung.

Exponentialgleichungen Beispiel 1:

A hoch x gleich b

Auf beiden Seiten der Exponentialgleichung wenden wir den dekadischen Logarithmus, auch Zehnerlogarithmus genannt, an. Dadurch können wir das x aus zum Exponenten vor das noch verbleibende lg2 ziehen. Mit dem Taschenrechner berechnen wir lg2 und lg20 und stellen dann die Gleichung nach x um.

Exponentialgleichungen Beispiel 2:

A hoch x gleich b

Durch eine Addition mit 1000 schaffen wir die -1000 auf die andere Seite. Dann wenden wir erneut den dekadischen Logarithmus an und ziehen das x vor die lg3. Die Berechnung von lg3 und lg1000 führen wir mit dem Taschenrechner durch und lösen im Anschluss nach x auf.

Exponentialgleichungen Beispiel 3:

A hoch x gleich b

Diese Exponentialgleichung lösen wir ähnlich wie die beiden vorigen: Zunächst wird lg auf beiden Seiten angewendet, wodurch der Exponent nach vorne gezogen werden kann. Die Klammer wird ausmultipliziert und anschließend wie eine normale Gleichung nach x aufgelöst.

Exponentialfunktionen und natürlicher Logarithmus

In diesem Abschnitt soll nun noch gezeigt werden, wie man eine e-Funktion durch Einsatz des natürlichen Logarithmus nach der Unbekannten auflöst. Auch hier bemühen wir uns dies über Beispiele mit Erklärungen zu zeigen.

Exponentialgleichungen Beispiel 4:

A hoch x gleich b

Da wir hier die Basis e ( eulersche Zahl haben ), müssen wir den natürlichen Logarithmus anwenden. Dies führen wir auf beiden Seiten durch und bekommen damit das "e" weg. Durch die Eingabe von ln8 in den Taschenrechner erhalten wir x = 2,08.

Exponentialgleichungen Beispiel 5:

A hoch x gleich b

Auch hier wenden wir auf beiden Seiten den natürlichen Logarithmus an und lösen die Gleichung im Anschluss nach x auf.

Links:

  • Zur Mathematik-Übersicht

Wie löse ich nach hoch X auf?

Bei einer Exponentialfunktion ist die Umkehrfunktion der Logarithmus. Welchen Logarithmus Sie verwenden, bleibt Ihnen überlassen. Beispielsweise können Sie mit dem natürlichen Logarithmus arbeiten. Lösen Sie nun die Gleichung 2x = 3 nach x auf, indem Sie den natürlichen Logarithmus auf beiden Seiten anwenden.

Wie berechnet man B bei Exponentialfunktion?

Allgemeiner Lösungsweg: Die Funktionsgleichung wird bestimmt, indem man 2 Punkte auf dem Funktionsgraphen bestimmt und diese dann in die Funktionsgleichung einsetzt. Am einfachsten ist es, wenn einer der Punkte der Schnittpunkt des Graphen mit der y-Achse ist, da so b einfach bestimmt werden kann.

Was ist 2 hoch x für eine Funktion?

Die Funktion f(x)=2^x wird parallel zur y-Achse gestreckt. Ein negativer Streckfaktor bewirkt, dass der Graph der Funktion zusätzlich an der x-Achse gespiegelt wird.

Wie lautet die Exponentialfunktion?

Funktionen der Form y=a·bx+csind auch allgemeine Exponentialfunktionen, denn eine Verschiebung in x-Richtung kann auch als Streckung oder Stauchung beschrieben werden. Für y=a·bxmit b > 1entspricht die Verschiebung um cEinheiten nach links einer Streckung mit dem Faktor bc, denn a·bx+c=a·bx·bc.