What connects the left and right hemispheres of the brain permitting them to communicate and coordinate processing?

1. Lokhorst G-JC. The first theory about hemispheric specialization: fresh light on an old codex. J Hist Med Allied Sci.1996;51:293–312. [PubMed] [Google Scholar]

2. Wigan AL. A New View of Insanity: the Duality of the Mind Proved by the Structure, Functions and Diseases of the Brain, and by the Phenomena of Mental Derangement, and Shown to be Essential to Moral Responsibility. London, UK: Longman. 1844 [PMC free article] [PubMed] [Google Scholar]

3. Harrington A. Medicine, Mind, and the Double Brain. Princeton, NJ: Princeton University Press; 1987 [Google Scholar]

4. Hellige JB. Hemispheric Asymmetry: What's Right and What's Left. Cambridge, MA: Harvard University Press; 1993 [Google Scholar]

5. Ramachandran VS. Phantoms in the Brain: Human Nature and the Architecture of the Mind. London, UK: HarperCollins. 2005 [Google Scholar]

6. Crow TJ. March 27, 1827 and what happened later - the impact of psychiatry on evolutionary theory. Prog Neuropsychopharmacol Biol Psychiatry.2006;30:785–796. [PubMed] [Google Scholar]

7. Cutting J. The Right Cerebral Hemisphere and Psychiatric Disorders. Oxford, UK: Oxford University Press; 1990 [Google Scholar]

8. Cutting J. Scheler, phenomenology and psychopathology. Philos Psychiatr Psychol.2009;16:143–159. [Google Scholar]

9. Kertesz A., Polk M., Black SE., et al. Anatomical asymmetries and functional laterality. Brain.1992;115:589–605. [PubMed] [Google Scholar]

10. Damasio H. Human Brain Anatomy in Computerized Images. Oxford, UK: Oxford University Press; 2005 [Google Scholar]

11. Galaburda AM. Anatomic basis of cerebral dominance. In: Davidson RJ, Hugdahl K, eds. Brain Asymmetry. Cambridge, MA: MIT Press; 1995:51–73. [Google Scholar]

12. Galaburda AM., Aboitiz F., Rosen GD., et al. Histological asymmetry in the primary visual cortex of the rat: implications for mechanisms of cerebral asymmetry. Cortex.1986;22:151–160. [PubMed] [Google Scholar]

13. Hayes TL., Lewis DA. Hemispheric differences in layer III pyramidal neurons of the anterior language area. Arch Neurol.1993;50:501–505. [PubMed] [Google Scholar]

14. Scheibel AB., Paul LA., Fried I., et al. Dendritic organization of the anterior speech area. Exp Neurol.1985;87:109–117. [PubMed] [Google Scholar]

15. Seldon HL. Structure of human auditory cortex: III. Statistical analysis of dendritic trees. Brain Res.1982;249:211–221. [PubMed] [Google Scholar]

16. Allen JS., Damasio H., Grabowski TJ., et al. Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. NeuroImage.2003;18:880–894. [PubMed] [Google Scholar]

17. Gur RC., Packer IK., Hungerbuhler JP., et al. Differences in the distribution of gray and white matter in human cerebral hemispheres. Science.1980;207:1226–1228. [PubMed] [Google Scholar]

18. Lewis D., Diamond MC. The influence of gonadal steroids on the asymmetry of the cerebral cortex. In: Davidson RJ, Hugdahl K, eds. Brain Asymmetry. Cambridge, MA: MIT Press; 1995:31–50. [Google Scholar]

19. Glick SD., Carlson KL., Drew KL., et al. Functional and neurochemical asymmetry in the corpus striatum. In: Ottoson D, ed. Duality and Unity of the Brain. London: Macmillan. 1987:3–16. [Google Scholar]

20. Glick SD., Ross DA., Hough LB. Lateral asymmetry of neurotransmitters in human brain. Brain Res.1982;234:53–63. [PubMed] [Google Scholar]

21. Tucker DM., Williamson PA. Asymmetric neural control systems in human self-regulation [review]. Psychol Rev.1984;91:185–215. [PubMed] [Google Scholar]

22. Jäncke L., Steinmetz H. Anatomical brain asymmetries and their relevance for functional asymmetries. In: Hugdahl K, Davidson RJ, eds. The Asymmetrical Brain. Cambridge, MA: MIT Press; 2003:187–230. [Google Scholar]

23. Banich MT. Interaction between the hemispheres and its implications for the processing capacity of the brain. In: Hugdahl K, Davidson RJ, eds. The Asymmetrical Brain. Cambridge, MA: MIT Press; 2003:261–302. [Google Scholar]

24. Meyer B-U., Röricht S., Gräfin von Einsiedel H., et al. Inhibitory and excitatory interhemispheric transfers between motor cortical areas in normal subjects and patients with abnormalities of the corpus callosum. Brain.1995;118:429–440. [PubMed] [Google Scholar]

25. Röricht S., Irlbacher K., Petrow E., et al. Normwerte transkallosal und kortikospinal vermittelter Effekte einer hemisphärenselektiven elektromyographischer magnetischen Kortexreizung beim Menschen. Z Elektroenzephalogr Elektromyogr Verwandte Geb.1997;28:34–38. [Google Scholar]

26. Conti F., Manzoni T. The neurotransmitters and postsynaptic actions of callosally projecting neurons. Behav Brain Res.1994;64:37–53. [PubMed] [Google Scholar]

27. Saron CD., Foxe JJ., Simpson GV., et al. Interhemispheric visuomotor activation: spatiotemporal electrophysiology related to reaction time. In: Zaidel E, Iacoboni M, eds. The Parallel Brain: the Cognitive Neuroscience of the Corpus Callosum. Cambridge, MA: MIT Press; 2002:171–219. [Google Scholar]

28. Saron CD., Foxe JJ., Schroeder CE., et al. Complexities of interhemispheric communication in sensorimotor tasks revealed by high-density event-related potential mapping. In: Hugdahl K, Davidson RJ, eds. The Asymmetrical Brain. Cambridge, MA: MIT Press; 2003:341–408. [Google Scholar]

29. Allison JD., Meador KJ., Loring DW., et al. Functional MRI cerebral activation and deactivation during finger movement. Neurology.2000;54:135–142. [PubMed] [Google Scholar]

30. Bloom JS., Hynd GW. The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev.2005;15:59–71. [PubMed] [Google Scholar]

31. Cook ND. Homotopic callosal inhibition. Brain Lang.1984;23:116–125. [PubMed] [Google Scholar]

32. Hoptman MJ., Davidson RJ. How and why do the two cerebral hemispheres interact? Psychol Bull.1994;116:195–219. [PubMed] [Google Scholar]

33. Chiarello C., Maxfield L. Varieties of interhemispheric inhibition, or how to keep a good hemisphere down. Brain Cogn.1996;30:81–108. [PubMed] [Google Scholar]

34. Hopkins WD., Marino L. Asymmetries in cerebral width in nonhuman primate brains as revealed by magnetic resonance imaging (MRI). Neuropsychologia.2000;38:493–499. [PubMed] [Google Scholar]

35. Friedman A., Polson MC. The hemispheres as independent resource systems: limited-capacity processing and cerebral specialization. J Exp Psychol Hum Percept Perform.1981;7:1031–1058. [PubMed] [Google Scholar]

36. Rogers LJ., Andrew RJ. Comparative Vertebrate Lateralization. Cambridge, UK: Cambridge University Press; 2002 [Google Scholar]

37. Braun CMJ. The evolution of hemispheric specialisation of antagonistic systems of management of the body's energy sources. Laterality.2007;12:397–427. [PubMed] [Google Scholar]

38. Rogers LJ. Evolution of hemispheric specialization: advantages and disadvantages. Brain Lang.2000;73:236–253. [PubMed] [Google Scholar]

39. Hoffman AM., Robakiewicz PE., Tuttle EM., et al. Behavioural lateralisation in the Australian magpie (Gymnorhina tibicen). Laterality.2006;11:110–121. [PubMed] [Google Scholar]

40. Rogers LJ., Kaplan G. An eye for a predator: lateralization in birds, with particular reference to the Australian magpie. In: Malashichev YB, Deckel AW, eds. Behavioral and Morphological Asymmetries in Vertebrates. Austin, TX: Landes Bioscience; 2006:47–57. [Google Scholar]

41. Rogers LJ., Zucca P., Vallortigara G. Advantages of having a lateralized brain. Proc R Soc Lond B Biol Sci.2004;271(suppl 6):S420–S422. [PMC free article] [PubMed] [Google Scholar]

42. Dharmaretnam M., Rogers LJ. Hemispheric specialization and dual processing in strongly versus weakly lateralized chicks. Behav Brain Res.2005;162:62–70. [PubMed] [Google Scholar]

43. Bugnyar T., Stöwe M., Heinrich B. Ravens, Corvus corax, follow gaze direction of humans around obstacles. Proc R Soc Lond B Biol Sci.2004;271:1331–1336. [PMC free article] [PubMed] [Google Scholar]

44. Evans CS., Evans L., Marler P. On the meaning of alarm calls - functional reference in an avian vocal system. Anim Behav.1993;46:23–38. [Google Scholar]

45. Lippolis G., Bisazza A., Rogers LJ., et al. Lateralisation of predator avoidance responses in three species of toads. Laterality.2002;7:163–183. [PubMed] [Google Scholar]

46. Lippolis G., Westman W., McAllan BM., et al. Lateralisation of escape responses in the striped-faced dunnart, Sminthopsis macroura (Dasyuridae: Marsupialia). Laterality.2005;10:457–470. [PubMed] [Google Scholar]

47. Csermely D. Lateralisation in birds of prey: adaptive and phylogenetic considerations. Behav Processes.2004;67:511–520. [PubMed] [Google Scholar]

48. Rogers LJ. Cognitive and social advantages of having a lateralized brain. In: Malashichev YB, Deckel AW, eds. Behavioral and Morphological Asymmetries in Vertebrates, Austin, TX: Landes Bioscience. 2006:129–139. [Google Scholar]

49. McGrew WC., Marchant LF. Laterality of hand use pays off in foraging success for wild chimpanzees. Primates.1999;40:509–513. [Google Scholar]

50. Fabre-Thorpe M., Fagot J., Lorincz E., et al. Laterality in cats: paw preference and performance in a visuomotor activity. Cortex.1993;29:15–24. [PubMed] [Google Scholar]

51. Bisazza A., Cantalupo C., Capocchiano M., et al. Population lateralisation and social behaviour: a study with sixteen species of fish. Laterality.2000;5:269–284. [PubMed] [Google Scholar]

52. Rogers LJ., Workman L. Light exposure during incubation affects competitive behaviour in domestic chicks. Appl Anim Behav Sci.1989;23:187–198. [Google Scholar]

53. Halpern ME., Güntürkün O., Hopkins WD., et al. Lateralization of the vertebrate brain: taking the side of model systems. J Neurosci.2005;25:10351–10357. [PMC free article] [PubMed] [Google Scholar]

54. Fernández-Carriba S., Loeches A., Morcillo A., et al. Asymmetry in facial expression of emotions by chimpanzees. Neuropsychologia.2002;40:1523–1533. [PubMed] [Google Scholar]

55. Ventolini N., Ferrero EA., Sponza S., et al. Laterality in the wild: preferential hemifield use during predatory and sexual behaviour in the blackwinged stilt (Himantopus himantopus). Anim Behav.2005;69:1077–1084. [Google Scholar]

56. Vallortigara G. Right hemisphere advantage for social recognition in the chick. Neuropsychologia.1992;30:761–768. [PubMed] [Google Scholar]

57. Vallortigara G., Rogers LJ., Bisazza A., et al. Complementary right and left hemifield use for predatory and agonistic behaviour in toads. NeuroReport.1998;9:3341–3344. [PubMed] [Google Scholar]

58. Glick SD., Meibach RC., Cox RD., et al. Multiple and interrelated asymmetries in rat brain. Life Sci.1979;25:395–400. [PubMed] [Google Scholar]

59. Sandhu S., Cook P., Diamond MC. Rat cerebral cortical estrogen receptors: male-female, right-left. Exp Neurol.1986;92:186–196. [PubMed] [Google Scholar]

60. Denenberg VH., Garbanati J., Sherman DA., et al. Infantile stimulation induces brain lateralization in rats. Science.1978;201:1150–1152. [PubMed] [Google Scholar]

61. Andrew RJ., Rogers LJ. The nature of lateralisation in tetrapods. In: Andrew RJ, Rogers LJ, eds. Comparative Vertebrate Lateralisation. Cambridge, UK: Cambridge University Press; 2002:94–125. [Google Scholar]

62. Crow TJ., Crow LR., Done DJ., et al. Relative hand skill predicts academic ability: global deficits at the point of hemispheric indecision. Neuropsychologia.1998;36:1275–1282. [PubMed] [Google Scholar]

63. Güntürkün O., Diekamp B., Manns M., et al. Asymmetry pays: visual lateralization improves discrimination success in pigeons. Curr Biol.2000;10:1079–1081. [PubMed] [Google Scholar]

64. van Zomeren AH., Brouwer WH. Clinical Neuropsychology of Attention. Oxford, UK: Oxford University Press; 1994 [Google Scholar]

65. Jerison HJ. Vigilance: biology, psychology, theory and practice. In: Mackie RR, ed. Vigilance (NATO conference series). New York, NY: Plenum Press; 1977:27–40. [Google Scholar]

66. Dimond SJ. Disconnection and psychopathology. In: Gruzelier JH, FlorHenry P, eds. Hemisphere Asymmetries of Function in Psychopathology. Amsterdam: Elsevier; 1979:35–47. [Google Scholar]

67. Rueckert L., Grafman J. Sustained attention deficits in patients with right frontal lesions. Neuropsychologia.1996;34:953–963. [PubMed] [Google Scholar]

68. Wilkins AJ., Shallice T., McCarthy R. Frontal lesions and sustained attention. Neuropsychologia.1987;25:359–365. [PubMed] [Google Scholar]

69. Korda RJ., Douglas JM. Attention deficits in stroke patients with aphasia. J Clin Exp Neuropsychol.1997;19:525–542. [PubMed] [Google Scholar]

70. Rousseaux M., Fimm B., Cantagallo A. Attention disorders in cerebrovascular diseases. In: Leclercq M, Zimmerman P, eds. Applied Neuropsychology of Attention. London: Psychology Press; 2002:280–304. [Google Scholar]

71. de Renzi E., Faglioni P. The comparative efficiency of intelligence and vigilance tests in detecting hemispheric cerebral damage. Cortex.1965;1:410–433. [Google Scholar]

72. Benson DF., Barton MI. Disturbances in constructional ability. Cortex.1970;6:19–46. [PubMed] [Google Scholar]

73. Howes D., Boller F. Simple reaction time: evidence for focal impairment from lesions of the right hemisphere. Brain.1975;98:317–332. [PubMed] [Google Scholar]

74. Nakamura R., Taniguchi R. Reaction time in patients with cerebral hemiparesis. Neuropsychologia.1977;15:845–848. [PubMed] [Google Scholar]

75. Tartaglione A., Bino G., Manzino M., et al. Simple reaction-time changes in patients with unilateral brain damage. Neuropsychologia.1986;24:649–658. [PubMed] [Google Scholar]

76. Sturm W., Büssing A. Einfluss der Aufgabenkomplexität auf hirnorganische Reaktionsbeeinträchtigungen - Hirnschädigungs - oder Patienteneffekt? Eur Arch Psychiatry Neurol Sci.1986;235:214–220. [PubMed] [Google Scholar]

77. Godefroy O., Lhullier C., Rousseaux M. Non-spatial attention disorders in patients with frontal or posterior brain damage. Brain.1996;119:191–202. [PubMed] [Google Scholar]

78. Sturm W., Reul J., Willmes K. Is there a generalised right hemisphere dominance for mediating cerebral activation? Evidence from a choice reaction experiment with lateralised simple warning stimuli. Neuropsychologia.1989;27:747–751. [PubMed] [Google Scholar]

79. Whitehead R. Right hemisphere processing superiority during sustained visual attention. J Cogn Neurosci.1991;3:329–334. [PubMed] [Google Scholar]

80. Dimond SJ. Performance by split-brain humans on lateralised vigilance tasks. Cortex.1979;15:43–50. [PubMed] [Google Scholar]

81. Lewin JS., Friedman L., Wu D., et al. Cortical localisation of human sustained attention: detection with functional MR using a visual vigilance paradigm. J Comput Assist Tomogr.1996;20:695–701. [PubMed] [Google Scholar]

82. Pardo JV., Fox PT., Raichle ME. Localization of a human system for sustained attention by positron emission tomography. Nature.1991;349:61–64. [PubMed] [Google Scholar]

83. Salmaso D., Denes G. Role of the frontal lobes on an attention task: a signal detection analysis. Percept Mot Skills.1982;54:1147–1150. [PubMed] [Google Scholar]

84. Rousseaux M., Godefroy O., Cabaret M., et al. Analyse et évolution des déficits cognitifs après rupture des anévrysmes de l'artère communicante antérieure. Rev Neurol (Paris).1996;152:678–687. [PubMed] [Google Scholar]

85. Dee HL., van Allen MW. Speed of decision-making processes in patients with unilateral cerebral disease. Arch Neurol.1973;28:163–166. [PubMed] [Google Scholar]

86. Bisiach E., Mini M., Sterzi R., et al. Hemispheric lateralisation of the decisional stage in choice reaction times to visual unstructured stimuli. Cortex.1982;18:191–197. [PubMed] [Google Scholar]

87. Jansen C., Sturm W., Willmes K. Sex-specific 'activation'-dominance of the left hemisphere for choice reactions: an experimental study regarding lateralisation of attention functions. Z Neuropsychol.1992;3:44–51. [Google Scholar]

88. Corbetta M., Miezin FM., Dobmeyer S., et al. Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci.1991;11:2383–2402. [PMC free article] [PubMed] [Google Scholar]

89. Çiçek M., Gitelman D., Hurley RS., et al. Anatomical physiology of spatial extinction. Cereb Cortex.2007;17:2892–2898. [PubMed] [Google Scholar]

90. Vohn R., Fimm B., Weber J., et al. Management of attentional resources in within-modal and cross-modal divided attention tasks: an fMRI study. Hum Brain Mapp.2007;28:1267–1275. [PMC free article] [PubMed] [Google Scholar]

91. Posner MI. Attention in cognitive neuroscience: an overview. In: Gazzaniga MS, ed. The Cognitive Neurosciences. Cambridge, MA: MIT Press; 1995:615–624. [Google Scholar]

92. Ivry RB., Robertson LC. The Two Sides of Perception. Cambridge, MA: MIT Press; 1998 [Google Scholar]

93. Sergent J. The cerebral balance of power: confrontation or cooperation? J Exp Psychol Hum Percept Perform.1982;8:253–272. [PubMed] [Google Scholar]

94. Robertson LC., Lamb MR. Neuropsychological contributions to theories of part/whole organisation. Cogn Psychol.1991;23:299–330. [PubMed] [Google Scholar]

95. van Kleeck MH. Hemispheric differences in global versus local processing of hierarchical visual stimuli by normal subjects: new data and a metaanalysis of previous studies. Neuropsychologia.1989;27:1165–1178. [PubMed] [Google Scholar]

96. Mesulam M-M. Behavioral neuroanatomy: large-scale networks, association cortex, frontal syndromes, the limbic system and hemispheric specialization. In: Mesulam M-M, ed. Principles of Behavioral and Cognitive Neurology. Oxford, UK: Oxford University Press; 2000 [Google Scholar]

97. Deouell LY., Ivry RB., Knight RT. Electrophysiologic methods and transcranial magnetic stimulation in behavioral neurology and neuropsychology. In: Feinberg TE, Farah MJ, eds. Behavioral Neurology and Neuropsychology. New York, NY: McGraw-Hill; 2003:105–134. [Google Scholar]

98. Delis DC., Robertson LC., Efron R. Hemispheric specialisation of memory for visual hierarchical stimuli. Neuropsychologia.1986;24:205–214. [PubMed] [Google Scholar]

99. Delis DC., Kiefner MG., Fridlund AJ. Visuospatial dysfunction following unilateral brain damage: dissociations in hierarchical and hemispatial analysis. J Clin Exp Neuropsychol.1988;10:421–431. [PubMed] [Google Scholar]

100. Siéroff E. Focussing on/in visual-verbal stimuli in patients with parietal lesions. Cogn Neuropsychol.1990;7:519–594. [Google Scholar]

101. Siéroff E. Les mécanismes attentionnels. In: Seron X, Jeannerod M, eds. Neuropsychologie humaine. Liège, France: Mardaga; 1994:127–151. [Google Scholar]

102. Halligan PW., Marshall JC. Toward a principled explanation of unilateral neglect. Cogn Neuropsychol.1994;11:167–206. [Google Scholar]

103. Leclercq M. Theoretical aspects of the main components and functions of attention. In: Leclercq M, Zimmerman P, eds. Applied Neuropsychology of Attention. London, UK: Psychology Press; 2002:3–55. [Google Scholar]

104. McGilchrist I. The Master and his Emissary: The Divided Brain and the Making of the Western World. New Haven, CT: Yale University Press; 2009 [Google Scholar]

105. Schutz LE. Broad-perspective perceptual disorder of the right hemisphere. Neuropsychol Rev.2005;15:11–27. [PubMed] [Google Scholar]

106. Posner M., Raichle M. Images of Mind. New York, NY: Scientific American Library; 1994 [Google Scholar]

107. Goldberg E. The Executive Brain: Frontal Lobes and the Civilized Mind. Oxford: Oxford University Press; 2001 [Google Scholar]

108. Tang AC. A hippocampal theory of cerebral lateralization. In: Hugdahl K, Davidson RJ, eds. The Asymmetrical Brain. Cambridge, MA: MIT Press; 2003:37–68. [Google Scholar]

109. Goldberg E., Costa LD. Hemispheric differences in the acquisition and use of descriptive systems. Brain Lang.1981;14:144–173. [PubMed] [Google Scholar]

110. Goldberg E., Podell K., Lovell M. Lateralization of frontal lobe functions and cognitive novelty. J Neuropsychiatry Clin Neurosci.1994;6:371–378. [PubMed] [Google Scholar]

111. Treyer V., Buck A., Schnider A. Subcortical loop activation during selection of currently relevant memories. J Cogn Neurosci.2003;15:610–618. [PubMed] [Google Scholar]

112. Cotton B., Tzeng OJ., Hardyck C. Role of cerebral hemispheric processing in the visual half-field stimulus-response compatibility effect. J Exp Psychol Hum Percept Perform.1980;6:13–23. [PubMed] [Google Scholar]

113. Persinger MA., Lalonde CA. Right to left hemispheric shift in occipital electroencephalographic responses to repeated Kimura figures. Percept Mot Skills.2000;91:273–278. [PubMed] [Google Scholar]

114. Martin A., Wiggs CL., Weisberg J. Modulation of human medial temporal lobe activity by form, meaning and experience. Hippocampus.1997;7:587–593. [PubMed] [Google Scholar]

115. Gold JM., Berman KF., Randolph C., et al. PET validation of a novel prefrontal task: delayed response alternation (DRA). Neuropsychology.1996;10:3–10. [Google Scholar]

116. Berns GS., Cohen JD., Mintun MA. Brain regions responsive to novelty in the absence of awareness. Science.1997;276:1272–1275. [PubMed] [Google Scholar]

117. Tulving E., Markowitsch HJ., Craik FE., et al. Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cereb Cortex.1996;6:71–79. [PubMed] [Google Scholar]

118. Cutting J. Principles of Psychopathology. Oxford, UK: Oxford University Press; 1997 [Google Scholar]

119. Gardner H. The Shattered Mind. New York, NY: Vintage Books; 1974 [Google Scholar]

120. Sperry RW. Consciousness, personal identity and the divided brain. In: Benson DF, Zaidel E, eds. The Dual Brain: Hemispheric Specialization in Humans. New York, NY: Guilford Press; 1985:11–26. [Google Scholar]

121. Mills DL., Coffey-Corina SA., Neville HJ. Language acquisition and cerebral specialization in 20-month-old infants. J Cogn Neurosci.1993;5:317–334. [PubMed] [Google Scholar]

122. Thal DJ., Marchman V., Stiles J., et al. Early lexical development in children with focal brain injury. Brain Lang.1991;40:491–527. [PubMed] [Google Scholar]

123. Bever TG., Chiarello RJ. Cerebral dominance in musicians and nonmusicians. Science.1974;185:537–539. [PubMed] [Google Scholar]

124. Podell K., Lovell M., Zimmerman M., et al. The Cognitive Bias Task and lateralised frontal lobe functions in males. J Neuropsychiatry Clin Neurosci.1995;7:491–501. [PubMed] [Google Scholar]

125. Phelps EA., Gazzaniga MS. Hemispheric differences in mnemonic processing: the effects of left hemisphere interpretation. Neuropsychologia.1992;30:293–297. [PubMed] [Google Scholar]

126. Brownell HH., Potter HH., Bihrle AM., et al. Inference deficits in right brain-damaged patients. Brain Lang.1986;27:310–321. [PubMed] [Google Scholar]

127. Molloy R., Brownell HH., Gardner H. Discourse comprehension by righthemisphere stroke patients: deficits of prediction and revision. In: Joanette Y Brownell HH, eds. Discourse Ability and Brain Damage: Theoretical and Empirical Perspectives. New York, NY: Springer-Verlag; 1990:113–130. [Google Scholar]

128. Metcalfe J., Funnell M., Gazzaniga MS. Right hemisphere memory superiority: studies of a split-brain patient. Psychol Sci.1995;6:157–164. [Google Scholar]

129. Federmeier KD., Kutas M. Right words and left words: electrophysiological evidence for hemispheric differences in meaning processing. Cogn Brain Res.1999;8:373–392. [PubMed] [Google Scholar]

130. Larose C., Richard-Yris M-A., Hausberger M., et al. Laterality of horses associated with emotionality in novel situations. Laterality.2006;11:355–367. [PubMed] [Google Scholar]

131. Coulson S. Semantic Leaps: Frame-Shifting and Conceptual Blending in Meaning Construction. Cambridge, UK: Cambridge University Press; 2001 [Google Scholar]

132. Aron AR., Fletcher PC., Bullmore ET., et al. Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. Nat Neurosci.2003;6:115–116. [PubMed] [Google Scholar]

133. Nagahama Y., Okada T., Katsumi Y., et al. Dissociable mechanisms of attentional control within the human prefrontal cortex. Cereb Cortex.2001;11:85–92. [PubMed] [Google Scholar]

134. Razani J., Boone KB., Miller BL., et al. Neuropsychological performance of right- and left-frontotemporal dementia compared to Alzheimer's disease. J Int Neuropsychol Soc.2001;7:468–480. [PubMed] [Google Scholar]

135. Ruff RM., Allen CC., Farrow CE., et al. Figural fluency: differential impairment in patients with left versus right frontal lobe lesions. Arch Clin Neuropsychol.1994;9:41–55. [PubMed] [Google Scholar]

136. Vanderhasselt MA., De Raedt R., Baeken C., et al. The influence of rTMS over the right dorsolateral prefrontal cortex on intentional set switching. Exp Brain Res.2006;172:561–565. [PubMed] [Google Scholar]

137. Richards L., Chiarello C. Activation without selection: parallel right-hemisphere roles in language and intentional movement? Brain Lang.1997;57:151–178. [PubMed] [Google Scholar]

138. Posner MI. Time course of activating brain areas in generating verbal associations. Psychol Sci.1997;8:56–59. [Google Scholar]

139. Brownell HH., Simpson TL., Bihrle AM., et al. Appreciation of metaphoric alternative word meanings by left and right brain-damaged patients. Neuropsychologia.1990;28:375–383. [PubMed] [Google Scholar]

140. Ramachandran VS. Phantom limbs, neglect syndromes, repressed memories, and Freudian psychology. Int Rev Neurobiol.1994;37:291–333. [PubMed] [Google Scholar]

141. Yochim BP., Kender R., Abeare C., et al. Semantic activation within and across the cerebral hemispheres: what's left isn't right. Laterality.2005;10:131–148. [PubMed] [Google Scholar]

142. Coney J., Evans KD. Hemispheric asymmetries in the resolution of lexical ambiguity. Neuropsychologia.2000;38:272–282. [PubMed] [Google Scholar]

143. Chiarello C. On codes of meaning and the meaning of codes: semantic access and retrieval within and between hemispheres. In: Beeman M, Chiarello C, eds. Right Hemisphere Language Comprehension: Perspectives from Cognitive Neuroscience. Mahwah, NJ: Lawrence Erlbaum; 1998:141–160. [Google Scholar]

144. Seger CA., Desmond JE., Glover GH., et al. Functional magnetic resonance imaging evidence for right-hemisphere involvement in processing unusual semantic relationships. Neuropsychology.2000;14:361–369. [PubMed] [Google Scholar]

145. Jung-Beeman M., Bowden EM., Haberman J., et al. Neural activity when people solve verbal problems with insight. PLoS Biol.2004;2:E97. [PMC free article] [PubMed] [Google Scholar]

146. Mashal N., Faust M., Hendler T., et al. An fMRI investigation of the neural correlates underlying the processing of novel metaphoric expressions. Brain Lang.2007;100:115–126. [PubMed] [Google Scholar]

147. Chiarello C., Senehi J., Nuding S. Semantic priming with abstract and concrete words: differential asymmetry may be post-lexical. Brain Lang.1987;31:43–60. [PubMed] [Google Scholar]

148. Nakagawa A. Role of anterior and posterior attention networks in hemispheric asymmetries during lexical decisions. J Cogn Neurosci.1991;3:313–321. [PubMed] [Google Scholar]

149. Tucker DM., Roth DL., Bair TB. Functional connections among cortical regions: topography of EEG coherence. Electroencephalogr Clin.1986;63:242–250. [PubMed] [Google Scholar]

150. Liotti M., Tucker DM. Emotion in asymmetric corticolimbic network. In: Davidson RJ, Hugdahl K, eds. Human Brain Laterality. Oxford, UK: Oxford University Press; 1994:389–424. [Google Scholar]

151. Semmes J., Weinstein S., Ghent L., et al. Somatosensory Changes After Penetrating Brain Wounds in Man. Cambridge, MA: Harvard University Press; 1960 [Google Scholar]

152. Teuber HL., Battersby WS., Bender MB. Visual Field Defects after Penetrating Missile Wounds of the Brain. Cambridge, MA: Harvard University Press; 1960 [Google Scholar]

153. Milner B. Hemispheric. Specialization and Interactions. Cambridge, MA: MIT Press; 1975 [Google Scholar]

154. Chapanis L. Language deficits and cross-modal sensory perception. In: Segalowitz SJ, Gruber FA, eds. Language Development and Neurological Theory. New York, NY: Academic Press; 1977:107–120. [Google Scholar]

155. Tucker DM. Developing emotions and cortical networks. In: Gunnar MR, Nelson CA, eds. Minnesota Symposium on Child Psychology. Vol 24: Developmental Behavioral Neuroscience. Hillsdale, NJ: Lawrence Erlbaum; 1992:75–128. [Google Scholar]

156. Levy-Agresti J., Sperry RW. Differential perceptual capacities in major and minor hemispheres. Proc Natl Acad Sci USA.1968;61:1151. [Google Scholar]

157. Kirsner K. Hemisphere-specific processes in letter-matching. J Exp Psychol Hum Percept Perform.1980;6:167–179. [PubMed] [Google Scholar]

158. Kirsner K., Brown H. Laterality and recency effects in working memory. Neuropsychologia.1981;19:249–261. [PubMed] [Google Scholar]

159. Marsolek CJ., Schacter DL., Nicholas CD. Form-specific visual priming for new associations in the right cerebral hemisphere. Mem Cognit.1996;24:539–556. [PubMed] [Google Scholar]

160. Navon D. Forest before trees: the precedence of global features in visual perception. Cogn Psychol.1977;9:353–383. [Google Scholar]

161. Christman S. Cerebral Asymmetries in Sensory and Perceptual Processing. Amsterdam: Elsevier; 1997 [Google Scholar]

162. Beeman MJ., Bowden EM., Gernsbacher MA. Right and left hemisphere cooperation for drawing predictive and coherence inferences during normal story comprehension. Brain Lang.2000;71:310–336. [PMC free article] [PubMed] [Google Scholar]

163. Young AH., Ratliff G. Visuospatial abilities of the right hemisphere. In: Young AH, ed. Functions of the Right Cerebral Hemisphere. London: Academic Press; 1983 [Google Scholar]

164. Yoshida T., Yoshino A., Takahashi Y., et al. Comparison of hemispheric asymmetry in global and local information processing and interference in divided and selective attention using spatial frequency filters. Exp Brain Res.2007;181:519–529. [PubMed] [Google Scholar]

165. Evert DL., Kmen M. Hemispheric asymmetries for global and local processing as a function of stimulus exposure duration. Brain Cogn.2003;51:115–142. [PubMed] [Google Scholar]

166. Fink GR., Marshall JC., Halligan PW., et al. Hemispheric asymmetries in global/local processing are modulated by perceptual salience. Neuropsychologia.1999;37:31–40. [PubMed] [Google Scholar]

167. Heinze HJ., Hinrichs H., Scholz M., et al. Neural mechanisms of global and local processing: a combined PET and ERP study. J Cogn Neurosci.1998;10:485–498. [PubMed] [Google Scholar]

168. Lux S., Marshall JC., Ritzl A., et al. A functional magnetic resonance imaging study of local/global processing with stimulus presentation in the peripheral visual hemifields. Neuroscience.2004;124:113–120. [PubMed] [Google Scholar]

169. Walsh K., Darby D. Neuropsychology, a Clinical Approach. 4th ed. New York, NY: Churchill, Livingstone; 1999 [Google Scholar]

170. Bradshaw JL., Nettleton NC. Human Cerebral Asymmetry. Englewood Cliffs, NJ: Prentice-Hall; 1983 [Google Scholar]

171. Anderson JR. Cognitive Psychology and its Implications. New York, NY: Freeman; 1990 [Google Scholar]

172. Stillings NA., Feinstein MH., Garfield J., et al. Cognitive Science: An Introduction. Cambridge, MA: MIT Press; 1987 [Google Scholar]

173. McFie J., Zangwill O. Visual constructive disabilities associated with lesions of the left cerebral hemisphere. Brain.1960;83:243–260. [Google Scholar]

174. Warrington EK., James M., Kinsbourne M. Drawing disability in relation to laterality of cerebral lesion. Brain.1966;89:53–82. [PubMed] [Google Scholar]

175. Kinsbourne M. Hemisphere interactions in depression. In: Kinsbourne M, ed. Cerebral Hemisphere Function in Depression. Washington, DC: American Psychiatric Press; 1988:133–162. [Google Scholar]

176. Alexander MP., Benson DF., Stuss DT. Frontal lobes and language. Brain Lang.1989;37:656–91. [PubMed] [Google Scholar]

177. Blakeslee TR. The Right Brain. London: Macmillan, 1980 [Google Scholar]

178. Deglin V. Split brain. Unesco Cour. 1976;29:4–31. [Google Scholar]

179. Heilman KM., Scholes R., Watson RT. Auditory affective agnosia: disturbed comprehension of affective speech. J Neurol Neurosurg Psychiatry.1975;38:69–72. [PMC free article] [PubMed] [Google Scholar]

180. Bottini G., Corcoran R., Sterzi R., et al. The role of the right hemisphere in the interpretation of figurative aspects of language: a positron emission tomography activation study. Brain.1994;117:1241–1253. [PubMed] [Google Scholar]

181. Foldi NS., Cicone M., Gardner H. Pragmatic aspects of communication in brain-damaged patients. In: Segalowitz SJ, ed. Language Functions and Brain Organisation. New York, NY: Academic Press; 1983 [Google Scholar]

182. Kaplan JA., Brownell HH., Jacobs JR., et al. The effects of right hemisphere damage on the pragmatic interpretation of conversational remarks. Brain Lang.1990;38:315–333. [PubMed] [Google Scholar]

183. Pobric G., Mashal N., Faust M., et al. The role of the right cerebral hemisphere in processing novel metaphoric expressions: a transcranial magnetic stimulation study. J Cogn Neurosci.2008;20:170–181. [PubMed] [Google Scholar]

184. Lakoff G., Johnson M. Philosophy in the Flesh: The Embodied Mind and its Challenge to Western Thought. New York, NY: Basic Books; 1999 [Google Scholar]

185. Deglin VL., Kinsbourne M. Divergent thinking styles of the hemispheres: how syllogisms are solved during transitory hemisphere suppression. Brain Cogn.1996;31:285–307. [PubMed] [Google Scholar]

186. Marsolek CJ. Abstract visual-form representations in the left cerebral hemisphere. J Exp Psychol Hum Percept Perform.1995;21:375–386. [PubMed] [Google Scholar]

187. Brown HD., Kosslyn SM. Cerebral lateralization. Curr Opin Neurobiol.1993;3:183–186. [PubMed] [Google Scholar]

188. Kosslyn SM. Seeing and imagining in the cerebral hemispheres: a computational approach. Psychol Rev.1987;94:148–175. [PubMed] [Google Scholar]

189. Warrington EK., McCarthy RA. Categories of knowledge: further fractionations and an attempted integration. Brain.1987;110:1273–1296. [PubMed] [Google Scholar]

190. Bornstein B., Sroka H., Munitz H. Prosopagnosia with animal face agnosia. Cortex.1969;5:164–169. [PubMed] [Google Scholar]

191. Landis T., Cummings JL., Benson DF., et al. Loss of topographic familiarity: an environmental agnosia. Arch Neurol.1986;43:132–136. [PubMed] [Google Scholar]

192. Bourgeois MJ., Christman S., Horowitz IA. The role of hemispheric activation in person perception: evidence for an attentional focus model. Brain Cogn.1998;38:202–219. [PubMed] [Google Scholar]

193. Farah MJ. Disorders of visual-spatial perception and cognition. In: Heilman KM, Valenstein E, eds. Clinical Neuropsychology. Oxford, UK: Oxford University Press; 2003:146–160. [Google Scholar]

194. McCarthy RA., Warrington EK. Cogn Neuropsychol. London: Academic Press; 1990 [Google Scholar]

195. Sergent J., Ohta S., MacDonald B. Functional neuroanatomy of face and object processing: a positron emission tomography study. Brain.1992;115:15–36. [PubMed] [Google Scholar]

196. Laeng B., Chabris CF., Kosslyn SM. Asymmetries in encoding spatial relations. In: Hugdahl K, Davidson RJ, eds. The Asymmetrical Brain. Cambridge, MA: MIT Press; 2003:303–339. [Google Scholar]

197. Laeng B., Zarrinpar A., Kosslyn SM. Do separate processes identify objects as exemplars versus members of basic-level categories? Evidence from hemispheric specialization. Brain Cogn.2003;53:15–27. [PubMed] [Google Scholar]

198. Koivisto M., Laine M. Strategies of semantic categorization in the cerebral hemispheres. Brain Lang.1999;66:341–357. [PubMed] [Google Scholar]

199. Marsolek CJ. Dissociable neural subsystems underlie abstract and specific object recognition. Psychol Sci.1999;10:111–118. [Google Scholar]

200. Zaidel DW., Kosta A. Hemispheric effects of canonical views of category members with known typicality levels. Brain Cogn.2001;46:311–316. [PubMed] [Google Scholar]

201. Kosslyn SM., Koenig O., Barrett A., et al. Evidence for two types of spatial representations: hemispheric specialization for categorical and coordinate relations. J Exp Psychol Hum Percept Perform.1989;15:723–735. [PubMed] [Google Scholar]

202. van Lancker D. Personal relevance and the human right hemisphere. Brain Cogn.1991;17:64–92. [PubMed] [Google Scholar]

203. Wallace GL., Canter GJ. Effects of personally relevant language materials on the performance of severely aphasic individuals. J Speech Hear Disord.1985;50:385–390. [PubMed] [Google Scholar]

204. Lhermitte F., Chedru F., Chain F. À propos d'un cas d'agnosie visuelle. Rev Neurol (Paris).1973;128:301–322. [PubMed] [Google Scholar]

205. Gainotti G. The relationships between anatomical and cognitive locus of lesion in category-specific disorders. In: Forde EME, Humphreys GW, eds. Category Specificity in Brain and Mind. Hove, UK: Psychology Press; 2002:403–426. [Google Scholar]

206. Martin A., Wiggs CL., Ungerleider LG., et al. Neural correlates of category-specific knowledge. Nature.1996;379:649–652. [PubMed] [Google Scholar]

207. Perani D., Cappa SF., Bettinardi V. Different neural systems for the recognition of animals and man-made tools. NeuroReport.1995;6:1637–1641. [PubMed] [Google Scholar]

208. Mummery CJ., Patterson K., Hodges JR., et al. Functional neuroanatomy of the semantic system: divisible by what? J Cogn Neurosci.1998;10:766–777. [PubMed] [Google Scholar]

209. Mummery CJ., Patterson K., Hodges JR., et al. Generating 'tiger' as an animal name or a word beginning with T: differences in brain activation. Proc R Soc Lond B Biol Sci.1996;263:989–995. [PubMed] [Google Scholar]

210. Price CJ., Friston KJ. Functional imaging studies of category specificity. In: Forde EME, Humphreys GW, eds. Category Specificity in Brain and Mind. Hove, UK: Psychology Press; 2002:427–447. [Google Scholar]

211. Gainotti G. What the locus of brain lesion tells us about the nature of the cognitive defect underlying category-specific disorders: a review. Cortex.2000;36:539–559. [PubMed] [Google Scholar]

212. Hartmann K., Goldenberg G., Daumüller M., et al. It takes the whole brain to make a cup of coffee: the neuropsychology of naturalistic actions involving technical devices. Neuropsychologia.2005;43:625–637. [PubMed] [Google Scholar]

213. Corballis MC. Sperry and the age of Aquarius: science, values and the split brain. Neuropsychologia.1998;36:1083–1087. [PubMed] [Google Scholar]

214. Schwartz MF., Buxbaum LJ., Montgomery MW., et al. Naturalistic action production following right hemisphere stroke. Neuropsychologia.1999;37:51–66. [PubMed] [Google Scholar]

215. Gainotti G., Barbier A., Marra C. Slowly progressive defect in recognition of familiar people in a patient with right anterior temporal atrophy. Brain.2003;126:792–803. [PubMed] [Google Scholar]

216. Giovanello KS., Alexander M., Verfaellie M. Differential impairment of person-specific knowledge in a patient with semantic dementia. Neurocase.2003;9:15–26. [PubMed] [Google Scholar]

217. Mendez MF., Lim GT. Alterations of the sense of 'humanness' in right hemisphere predominant frontotemporal dementia patients. Cogn Behav Neurol.2004;17:133–138. [PubMed] [Google Scholar]

218. Decety J., Chaminade T. When the self represents the other: a new cognitive neuroscience view on psychological identification. Conscious Cogn.2003;12:577–596. [PubMed] [Google Scholar]

219. Hunt GR., Corballis MC., Gray RD. Laterality in tool manufacture by crows - neural processing and not ecological factors may influence “handedness” in these birds. Nature.2001;414:707. [PubMed] [Google Scholar]

220. Rutledge R., Hunt GR. Lateralised tool use in New Caledonian crows. Anim Behav.2004;67:327–332. [Google Scholar]

221. Cowin EL., Hellige JB. Categorical versus coordinate spatial processing: effects of blurring and hemispheric asymmetry. J Cogn Neurosci.1994;6:156–164. [PubMed] [Google Scholar]

222. Hellige JB. Effects of perceptual quality and visual field of probe stimulus presentation on memory search for letters. J Exp Psychol Hum Percept Perform.1980;6:639–651. [PubMed] [Google Scholar]

223. Bradshaw GJ., Hicks RE., Rose B. Lexical discrimination and letter-string identification in the two visual fields. Brain Lang.1979;8:10–18. [PubMed] [Google Scholar]

224. Sergent J., Bindra D. Differential hemispheric processing of faces: methodological considerations and reinterpretation. Psychol Bull.1981;89:541–554. [PubMed] [Google Scholar]

225. Boroojerdi B., Diefenbach K., Ferbert A. Transcallosal inhibition in cortical and subcortical cerebral vascular lesions. J Neurol Sci.1996;144:160–170. [PubMed] [Google Scholar]

226. Schnider A., Benson F., Rosner LJ. Callosal disconnection in multiple sclerosis. Neurology.1993;43:1243–1245. [PubMed] [Google Scholar]

227. Harnad SR. Creativity, lateral saccades and the nondominant hemisphere. Percept Mot Skills.1972;34:653–654. [PubMed] [Google Scholar]

228. Bowden EM., Beeman MJ. Getting the right idea: semantic activation in the right hemisphere may help solve insight problems. Psychol Sci.1998;9:435–440. [Google Scholar]

229. Bogen JE., Bogen GM. Split-brains: interhemispheric exchange in creativity. In: Runco MA, Pritzker R, eds. Encyclopedia of Creativity. San Diego, CA: Academic Press; 1999 [Google Scholar]

230. Levy J., Heller W., Banich MT., et al. Are variations among right-handed individuals in perceptual asymmetries caused by characteristic arousal differences between hemispheres? J Exp Psychol Hum Percept Perform.1983;9:329–359. [PubMed] [Google Scholar]

231. Kim H., Levine SC. Variations in characteristic perceptual asymmetry: modality specific and modality general components. Brain Cogn.1992;19:21–47. [PubMed] [Google Scholar]

232. Levine SC., Banich MT., Koch-Weser M. Variations in patterns of lateral asymmetry among dextrals. Brain Cogn.1984;3:317–334. [PubMed] [Google Scholar]

233. Boles DB. Relationships among multiple task asymmetries. II. A largesample factor analysis. Brain Cogn.1998;36:268–289. [PubMed] [Google Scholar]

234. Spencer KM., Banich MT. Hemispheric biases and the control of visuospatial attention: an ERP study. BMC Neurosci.2005;6:51. [PMC free article] [PubMed] [Google Scholar]

235. Bisiacchi P., Marzi CA., Nicoletti R., et al. Left-right asymmetry of callosal transfer in normal human subjects. Behav Brain Res.1994;64:173–178. [PubMed] [Google Scholar]

236. Brown WS., Larson EB., Jeeves M. Directional asymmetries in interhemispheric transmission time: evidence from visual evoked potentials. Neuropsychologia.1994;32:439–448. [PubMed] [Google Scholar]

237. Saron CD., Davidson RJ. Visual evoked potential measures of interhemispheric transfer time in humans. Behav Neurosci.1989;103:1115–1138. [PubMed] [Google Scholar]

238. Larson EB., Brown WS. Bilateral field interactions, hemispheric specialization and evoked potential interhemispheric transmission time. Neuropsychologia.1997;35:573–581. [PubMed] [Google Scholar]

239. Brown-Séquard C-E. Have we two brains or one? The Forum.1890;9:627–643. [Google Scholar]

240. Oliveri M., Rossini PM., Traversa R., et al. Left frontal transcranial magnetic stimulation reduces contralesional extinction in patients with unilateral right brain damage. Brain.1999;122:1731–1739. [PubMed] [Google Scholar]

241. Hilgetag CC., Théoret H., Pascual-Leone A. Enhanced visual spatial attention ipsilateral to rTMS-induced 'virtual lesions' of human parietal cortex. Nat Neurosci.2001;4:953–957. [PubMed] [Google Scholar]

242. Vuilleumier P., Hester D., Assal G., et al. Unilateral spatial neglect recovery after sequential strokes. Neurology.1996;46:184–189. [PubMed] [Google Scholar]

243. Kinsbourne M. Orientational bias model of unilateral neglect: evidence from attentional gradients within hemispace. In: Robertson IH, Marshall JC, eds. Unilateral Neglect: Clinical and Experimental Studies. Hove, UK: Lawrence Erlbaum; 1993:63–86. [Google Scholar]

244. Güntürkün O., Böhringer PG. Lateralization reversal after intertectal commissurotomy in the pigeon. Brain Res.1987;408:1–5. [PubMed] [Google Scholar]

245. Luck SJ., Hillyard SA., Mangun GR., et al. Independent attentional scanning in the separated hemispheres of split-brain patients. J Cogn Neurosci.1994;6:84–91. [PubMed] [Google Scholar]

What structure connects the right and left cerebral hemisphere?

The two hemispheres are connected by a thick band of nerve fibres called the corpus callosum. The brain halves are able to communicate with each other via this 'bridge'.

How do the two halves of the brain operate interdependently?

The two hemispheres are connected by a thick band of neural fibers known as the corpus callosum, consisting of about 200 million axons. The corpus callosum allows the two hemispheres to communicate with each other and allows for information being processed on one side of the brain to be shared with the other side.

Which structure is a large tract that connects the two hemispheres?

The corpus callosum is a large bundle of more than 200 million myelinated nerve fibers that connect the two brain hemispheres, permitting communication between the right and left sides of the brain.

What role do the convolutions play in the brain?

The cerebral cortex of the human brain is highly convoluted, meaning it has many folds and creases. These convolutions allow a large surface area of brain to fit inside our skulls. Because of this brain shape, our brains can have billions of neurons and we can still have relatively small heads!