What are the factors that enable the baby to initiate respiration immediately postpartum?

References

Harding, R. Fetal breathing movements. In: Crystal, R, West, J, Weibel, E, Barnes, P, eds. The Lung: Scientific Foundations. New York: Lippincott-Raven; 1997:2093.Google Scholar

Hooper, SB, Harding, R. Fetal lung liquid: a major determinant of the growth and functional development of the fetal lung. Clin Exp Pharmacol Physiol. 1995 Apr;22(4):235247.CrossRefGoogle Scholar

Dawes, GS, Fox, HE, Leduc, BM, Liggins, GC, Richards, RT. Respiratory movements and rapid eye movement sleep in the foetal lamb. J Physiol. 1972 Jan;220(1):119143.CrossRefGoogle ScholarPubMed

Harding, R, Liggins, GC. Changes in thoracic dimensions induced by breathing movements in fetal sheep. Reprod Fertil Dev. 1996;8(1):117124.CrossRefGoogle ScholarPubMed

Davey, MG, Moss, TJ, McCrabb, GJ, Harding, R. Prematurity alters hypoxic and hypercapnic ventilatory responses in developing lambs. Respir Physiol. 1996 Aug;105(1–2):5767.CrossRefGoogle ScholarPubMed

Vyas, H, Field, D, Milner, AD, Hopkin, IE. Determinants of the first inspiratory volume and functional residual capacity at birth. Pediatr Pulmonol. 1986 Jul;2(4):189193.CrossRefGoogle ScholarPubMed

Koos, BJ, Maeda, T, Jan, C. Adenosine A(1) and A(2A) receptors modulate sleep state and breathing in fetal sheep. J Appl Physiol (1985). 2001 Jul;91(1):343350.Google Scholar

Jansen, AH, Chernick, V. Fetal breathing and development of control of breathing. J Appl Physiol (1985). 1991 Apr;70(4):14311446.Google ScholarPubMed

Thorburn, GD. The placenta and the control of fetal breathing movements. Reprod Fertil Dev. 1995;7(3):577594.CrossRefGoogle Scholar

Crossley, KJ, Nicol, MB, Hirst, JJ, Walker, DW, Thorburn, GD. Suppression of arousal by progesterone in fetal sheep. Reprod Fertil Dev. 1997;9(8):767773.CrossRefGoogle ScholarPubMed

Tai, TC, MacLusky, NJ, Adamson, SL. Ontogenesis of prostaglandin E2 binding sites in the brainstem of the sheep. Brain Res. 1994 Jul 25;652(1):2839.CrossRefGoogle ScholarPubMed

Adamson, SL. Regulation of breathing at birth. J Dev Physiol. 1991 Jan;15(1):4552.Google ScholarPubMed

Dawes, GS. Oxygen supply and consumption on late fetal life and the onset of breathing at birth. In: Fenn, WO, Rahn, H, eds. Handbook of Physiology: Sec 2. Respiration. Washington DC: American Physiological Society; 1965:13131328.Google Scholar

Harned, HS Jr, Wolkoff, AS, Pickrell, J, MacKinney, LG. Hemodynamic observations during birth of the lamb. Studies of the unanesthetized full-term animal. Am J Dis Child. 1961 Aug;102:180189.CrossRefGoogle ScholarPubMed

Rigatto, H, Brady, JP, de la Torre Verduzco, R. Chemoreceptor reflexes in preterm infants: I. The effect of gestational and postnatal age on the ventilatory response to inhalation of 100% and 15% oxygen. Pediatrics. 1975 May;55(5):604613.Google ScholarPubMed

Gluckman, PD, Johnston, BM. Lesions in the upper lateral pons abolish the hypoxic depression of breathing in unanaesthetized fetal lambs in utero. J Physiol. 1987 Jan;382:373383.CrossRefGoogle ScholarPubMed

Bookatz, GB, Mayer, CA, Wilson, CG, et al. Effect of supplemental oxygen on reinitiation of breathing after neonatal resuscitation in rat pups. Pediatr Res. 2007 Jun;61(6):698702.CrossRefGoogle ScholarPubMed

Wong, KA, Bano, A, Rigaux, A, et al. Pulmonary vagal innervation is required to establish adequate alveolar ventilation in the newborn lamb. J Appl Physiol (1985). 1998 Sep;85(3):849859.Google ScholarPubMed

Lines, A, Hooper, SB, Harding, R. Lung liquid production rates and volumes do not decrease before labor in healthy fetal sheep. J Appl Physiol (1985). 1997 Mar;82(3):927932.Google Scholar

Dickson, KA, Harding, R. Restoration of lung liquid volume following its acute alteration in fetal sheep. J Physiol. 1987 Apr;385:531543.CrossRefGoogle Scholar

Hooper, SB, Dickson, KA, Harding, R. Lung liquid secretion, flow and volume in response to moderate asphyxia in fetal sheep. J Dev Physiol. 1988 Oct;10(5):473485.Google ScholarPubMed

Harding, R, Hooper, SB, Dickson, KA. A mechanism leading to reduced lung expansion and lung hypoplasia in fetal sheep during oligohydramnios. Am J Obstet Gynecol. 1990 Dec;163(6 Pt 1):19041913.CrossRefGoogle ScholarPubMed

Kitterman, JA, Ballard, PL, Clements, JA, Mescher, EJ, Tooley, WH. Tracheal fluid in fetal lambs: spontaneous decrease prior to birth. J Appl Physiol Respir Environ Exerc Physiol. 1979 Nov;47(5):985989.Google Scholar

Riley, CA, Boozer, K, King, TL. Antenatal corticosteroids at the beginning of the 21st century. J Midwifery Women’s Health. 2011 Nov;56(6):591597.CrossRefGoogle ScholarPubMed

Bland, RD. Loss of liquid from the lung lumen in labor: more than a simple “squeeze.” Am J Physiol Lung Cell Mol Physiol. 2001 Apr;280(4):L602L605.Google ScholarPubMed

Albuquerque, CA, Smith, KR, Saywers, TE, Johnson, C, Cock, ML, Harding, R. Relation between oligohydramnios and spinal flexion in the human fetus. Early Hum Dev. 2002 Jul;68(2):119126.CrossRefGoogle ScholarPubMed

Olver, RE, Ramsden, CA, Strang, LB, Walters, DV. The role of amiloride-blockable sodium transport in adrenaline-induced lung liquid reabsorption in the fetal lamb. J Physiol. 1986 Jul;376:321340.CrossRefGoogle ScholarPubMed

Barker, PM, Brown, MJ, Ramsden, CA, Strang, LB, Walters, DV. The effect of thyroidectomy in the fetal sheep on lung liquid reabsorption induced by adrenaline or cyclic AMP. J Physiol. 1988 Dec;407:373383.CrossRefGoogle ScholarPubMed

Wallace, MJ, Hooper, SB, Harding, R. Effects of elevated fetal cortisol concentrations on the volume, secretion, and reabsorption of lung liquid. Am J Physiol. 1995 Oct;269(4 Pt 2):R881R887.Google ScholarPubMed

Wallace, MJ, Hooper, SB, Harding, R. Role of the adrenal glands in the maturation of lung liquid secretory mechanisms in fetal sheep. Am J Physiol. 1996 Jan;270(1 Pt 2):R33R40.Google ScholarPubMed

Barker, PM, Markiewicz, M, Parker, KA, Walters, DV, Strang, LB. Synergistic action of triiodothyronine and hydrocortisone on epinephrine-induced reabsorption of fetal lung liquid. Pediatr Res. 1990 Jun;27(6):588591.CrossRefGoogle ScholarPubMed

Hummler, E, Planes, C. Importance of ENaC-mediated sodium transport in alveolar fluid clearance using genetically-engineered mice. Cell Physiol Biochem. 2010;25(1):6370.CrossRefGoogle ScholarPubMed

Schilleman, K, van der Pot, CJ, Hooper, SB, Lopriore, E, Walther, FJ, te Pas, AB. Evaluating manual inflations and breathing during mask ventilation in preterm infants at birth. J Pediatr. 2013 Mar;162(3):457463.CrossRefGoogle ScholarPubMed

Hooper, SB, Kitchen, MJ, Siew, ML, et al. Imaging lung aeration and lung liquid clearance at birth using phase contrast X-ray imaging. Clin Exp Pharmacol Physiol. 2009 Jan;36(1):117125.CrossRefGoogle ScholarPubMed

Siew, ML, Wallace, MJ, Kitchen, MJ, et al. Inspiration regulates the rate and temporal pattern of lung liquid clearance and lung aeration at birth. J Appl Physiol. 2009 Jun;106(6):18881895.CrossRefGoogle ScholarPubMed

te Pas, AB, Davis, PG, Kamlin, CO, Dawson, J, O’Donnell, CP, Morley, CJ. Spontaneous breathing patterns of very preterm infants treated with continuous positive airway pressure at birth. Pediatr Res. 2008 Apr;64(3):281285.CrossRefGoogle ScholarPubMed

te Pas, AB, Davis, PG, Hooper, SB, Morley, CJ. From liquid to air: breathing after birth. J Pediatr. 2008 May;152(5):607611.CrossRefGoogle ScholarPubMed

Hooper, SB, Kitchen, MJ, Wallace, MJ, Yagi, N, Uesugi, K, Morgan, MJ, et al. Imaging lung aeration and lung liquid clearance at birth. FASEB J. 2007 Oct;21(12):33293337.CrossRefGoogle ScholarPubMed

Hooper, SB, Harding, R. Effect of beta-adrenergic blockade on lung liquid secretion during fetal asphyxia. Am J Physiol. 1989 Oct;257(4 Pt 2):R705R710.Google ScholarPubMed

Walters, DV, Olver, RE. The role of catecholamines in lung liquid absorption at birth. Pediatr Res. 1978 Mar;12(3):239242.CrossRefGoogle ScholarPubMed

Dawson, JA, Kamlin, CO, Wong, C, et al. Changes in heart rate in the first minutes after birth. Arch Dis Child Fetal Neonatal Ed. 2010 May;95(3):F177F181.CrossRefGoogle ScholarPubMed

Hummler, E, Barker, P, Gatzy, J, et al. Early death due to defective neonatal lung liquid clearance in alpha-ENaC-deficient mice. Nat Genet. 1996 Mar;12(3):325328.CrossRefGoogle ScholarPubMed

Jain, L, Eaton, DC. Physiology of fetal lung fluid clearance and the effect of labor. Semin Perinatol. 2006 Feb;30(1):3443.CrossRefGoogle Scholar

Bonny, O, Rossier, BC. Disturbances of Na/K balance: pseudohypoaldosteronism revisited. J Am Soc Nephrol. 2002 Sep;13(9):23992414.CrossRefGoogle Scholar

Olver, RE, Robinson, EJ. Sodium and chloride transport by the tracheal epithelium of fetal, new-born and adult sheep. J Physiol. 1986 Jun;375:377390.CrossRefGoogle ScholarPubMed

Wallace, MJ, Hooper, SB, Harding, R. Regulation of lung liquid secretion by arginine vasopressin in fetal sheep. Am J Physiol. 1990 Jan;258(1 Pt 2):R104R111.Google Scholar

O’Brodovich, H, Hannam, V, Seear, M, Mullen, JB. Amiloride impairs lung water clearance in newborn guinea pigs. J Appl Physiol (1985). 1990 Apr;68(4):17581762.Google Scholar

Kitchen, MJ, Lewis, RA, Morgan, MJ, et al. Dynamic measures of regional lung air volume using phase contrast x-ray imaging. Phys Med Biol. 2008 Nov 7;53(21):60656077.CrossRefGoogle ScholarPubMed

Siew, ML, Wallace, MJ, Allison, BJ, et al. The role of lung inflation and sodium transport in airway liquid clearance during lung aeration in newborn rabbits. Pediatr Res. 2013 Apr;73(4 Pt 1):443449.CrossRefGoogle ScholarPubMed

Kitchen, MJ, Lewis, RA, Yagi, N, et al. Phase contrast X-ray imaging of mice and rabbit lungs: a comparative study. Br J Radiol. 2005 Nov;78(935):10181027.CrossRefGoogle Scholar

Mortola, JP, Fisher, JT, Smith, B, Fox, G, Weeks, S. Dynamics of breathing in infants. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):12091215.Google ScholarPubMed

Bland, RD, McMillan, DD, Bressack, MA, Dong, L. Clearance of liquid from lungs of newborn rabbits. J Appl Physiol Respir Environ Exerc Physiol. 1980 Aug;49(2):171177.Google ScholarPubMed

Miserocchi, G, Poskurica, BH, Del, FM. Pulmonary interstitial pressure in anesthetized paralyzed newborn rabbits. J Appl Physiol (1985). 1994 Nov;77(5):22602268.Google ScholarPubMed

Avery, ME, Cook, CD. Volume-pressure relationships of lungs and thorax in fetal, newborn, and adult goats. J Appl Physiol. 1961 Nov;16:10341038.Google ScholarPubMed

Davey, MG, Johns, DP, Harding, R. Postnatal development of respiratory function in lambs studied serially between birth and 8 weeks. Respir Physiol. 1998 Jul;113(1):8393.CrossRefGoogle ScholarPubMed

Flecknoe, SJ, Crossley, KJ, Zuccala, GM, et al. Increased lung expansion alters lung growth but not alveolar epithelial cell differentiation in newborn lambs. Am J Physiol Lung Cell Mol Physiol. 2007 Feb;292(2):L454L461.CrossRefGoogle Scholar

Flecknoe, SJ, Wallace, MJ, Harding, R, Hooper, SB. Determination of alveolar epithelial cell phenotypes in fetal sheep: evidence for the involvement of basal lung expansion. J Physiol. 2002 Jul 1;542(Pt 1):245253.CrossRefGoogle ScholarPubMed

Flecknoe, SJ, Wallace, MJ, Cock, ML, Harding, R, Hooper, SB. Changes in alveolar epithelial cell proportions during fetal and postnatal development in sheep. Am J Physiol Lung Cell Mol Physiol. 2003 Sep;285(3):L664L670.CrossRefGoogle Scholar

Hooper, SB. Role of luminal volume changes in the increase in pulmonary blood flow at birth in sheep. Exp Physiol. 1998 Nov;83(6):833842.CrossRefGoogle Scholar

Polglase, GR, Wallace, MJ, Grant, DA, Hooper, SB. Influence of fetal breathing movements on pulmonary hemodynamics in fetal sheep. Pediatr Res. 2004 Dec;56(6):932938.CrossRefGoogle ScholarPubMed

Bhatt, S, Alison, BJ, Wallace, EM, et al. Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol. 2013 Apr 15;591(Pt 8):21132126.CrossRefGoogle ScholarPubMed

Crossley, KJ, Allison, BJ, Polglase, GR, Morley, CJ, Davis, PG, Hooper, SB. Dynamic changes in the direction of blood flow through the ductus arteriosus at birth. J Physiol. 2009 Oct 1;587(Pt 19):46954704.CrossRefGoogle ScholarPubMed

van Vonderen, JJ, Roest, AA, Siew, ML, et al. Noninvasive measurements of hemodynamic transition directly after birth. Pediatr Res. 2014 Mar;75(3):448452.CrossRefGoogle ScholarPubMed

Vento, M, Saugstad, OD. Resuscitation of the term and preterm infant. Semin Fetal Neonatal Med. 2010 Aug;15(4):216222.CrossRefGoogle ScholarPubMed

Perlman, JM, Risser, R. Cardiopulmonary resuscitation in the delivery room. Associated clinical events. Arch Pediatr Adolesc Med. 1995 Jan;149(1):2025.CrossRefGoogle ScholarPubMed

te Pas, AB, Walther, FJ. Ventilation of very preterm infants in the delivery room. Current Pediatric Reviews. 2006;2(3):187197.CrossRefGoogle Scholar

Gerhardt, T, Bancalari, E. Chestwall compliance in full-term and premature infants. Acta Paediatr Scand. 1980 May;69(3):359364.CrossRefGoogle ScholarPubMed

Heldt, GP, McIlroy, MB. Dynamics of chest wall in preterm infants. J Appl Physiol. 1987 Jan;62(1):170174.Google ScholarPubMed

Barker, PM, Olver, RE. Invited review: Clearance of lung liquid during the perinatal period. J Appl Physiol (1985). 2002 Oct;93(4):15421548.CrossRefGoogle ScholarPubMed

Barker, PM, Gowen, CW, Lawson, EE, Knowles, MR. Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J Pediatr. 1997 Mar;130(3):373377.CrossRefGoogle ScholarPubMed

Hooper, SB, Siew, ML, Kitchen, MJ, te Pas, AB. Establishing functional residual capacity in the non-breathing infant. Semin Fetal Neonatal Med. 2013 Dec;18(6):336343.CrossRefGoogle ScholarPubMed

te Pas, AB, Siew, M, Wallace, MJ, et al. Effect of sustained inflation length on establishing functional residual capacity at birth in ventilated premature rabbits. Pediatr Res. 2009 Sep;66(3):295300.CrossRefGoogle ScholarPubMed

te Pas, AB, Siew, M, Wallace, MJ, et al. Establishing functional residual capacity at birth: the effect of sustained inflation and positive end-expiratory pressure in a preterm rabbit model. Pediatr Res. 2009 May;65(5):537541.CrossRefGoogle Scholar

Sobotka, KS, Hooper, SB, Allison, BJ, et al. An initial sustained inflation improves the respiratory and cardiovascular transition at birth in preterm lambs. Pediatr Res. 2011Jul;70(1):5660.CrossRefGoogle ScholarPubMed

Vyas, H, Milner, AD, Hopkin, IE, Boon, AW. Physiologic responses to prolonged and slow-rise inflation in the resuscitation of the asphyxiated newborn infant. J Pediatr. 1981 Oct;99(4):635639.CrossRefGoogle ScholarPubMed

Lindner, W, Vossbeck, S, Hummler, H, Pohlandt, F. Delivery room management of extremely low birth weight infants: spontaneous breathing or intubation? Pediatrics. 1999 May;103(5 Pt 1):961967.CrossRefGoogle ScholarPubMed

Lindner, W, Hogel, J, Pohlandt, F. Sustained pressure-controlled inflation or intermittent mandatory ventilation in preterm infants in the delivery room? A randomized, controlled trial on initial respiratory support via nasopharyngeal tube. Acta Paediatr. 2005 Mar;94(3):303309.Google ScholarPubMed

Harling, AE, Beresford, MW, Vince, GS, Bates, M, Yoxall, CW. Does sustained lung inflation at resuscitation reduce lung injury in the preterm infant? Arch Dis Child Fetal Neonatal Ed. 2005 Sep;90(5):F406F410.CrossRefGoogle ScholarPubMed

te Pas, AB, Walther, FJ. A randomized, controlled trial of delivery-room respiratory management in very preterm infants. Pediatrics. 2007 Aug;120(2):322329.CrossRefGoogle ScholarPubMed

Lista, G, Fontana, P, Castoldi, F, Cavigioli, F, Dani, C. Does sustained lung inflation at birth improve outcome of preterm infants at risk for respiratory distress syndrome? Neonatology. 2010 Jul 9;99(1):4550.CrossRefGoogle ScholarPubMed

Bjorklund, LJ, Ingimarsson, J, Curstedt, T, John, J, Robertson, B, Werner, O, et al. Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res. 1997 Sep;42(3):348355.CrossRefGoogle ScholarPubMed

Ingimarsson, J, Bjorklund, LJ, Curstedt, T, Larsson, A, Robertson, B, Werner, O. A lung recruitment maneuver immediately before rescue surfactant therapy does not affect the lung mechanical response in immature lambs with respiratory distress syndrome. Acta Anaesthesiol Scand. 2003 Sep;47(8):968972.CrossRefGoogle Scholar

Fuchs, H, Lindner, W, Buschko, A, Trischberger, T, Schmid, M, Hummler, HD. Cerebral oxygenation in very low birth weight infants supported with sustained lung inflations after birth. Pediatr Res. 2011 Aug; 70(2):176180.CrossRefGoogle ScholarPubMed

Hillman, NH, Kemp, MW, Noble, PB, Kallapur, SG, Jobe, AH. Sustained inflation at birth did not protect preterm fetal sheep from lung injury. Am J Physiol Lung Cell Mol Physiol. 2013 Sep 15;305(6):L446L453.CrossRefGoogle Scholar

Tingay, DG, Bhatia, R, Schmolzer, GM, Wallace, MJ, Zahra, VA, Davis, PG. Effect of sustained inflation vs. stepwise PEEP strategy at birth on gas exchange and lung mechanics in preterm lambs. Pediatr Res. 2014 Feb;75(2):288294.CrossRefGoogle ScholarPubMed

Polglase, GR, Morley, CJ, Crossley, KJ, et al. Positive end-expiratory pressure differentially alters pulmonary hemodynamics and oxygenation in ventilated, very premature lambs. J Appl Physiol. 2005 Oct;99(4):14531461.CrossRefGoogle ScholarPubMed

Kitchen, MJ, Siew, ML, Wallace, MJ, et al. Changes in positive end-expiratory pressure alter the distribution of ventilation within the lung immediately after birth in newborn rabbits. PLoS One. 2014;9(4):e93391.CrossRefGoogle ScholarPubMed

Schmolzer, GM, Kumar, M, Pichler, G, Aziz, K, O’Reilly, M, Cheung, PY. Non-invasive versus invasive respiratory support in preterm infants at birth: systematic review and meta-analysis. BMJ. 2013;347:f5980.CrossRefGoogle ScholarPubMed

Higgins, RD, Bancalari, E, Willinger, M, Raju, TN. Executive summary of the workshop on oxygen in neonatal therapies: controversies and opportunities for research. Pediatrics. 2007 Apr;119(4):790–6.CrossRefGoogle ScholarPubMed

Vento, M, Saugstad, OD. Oxygen supplementation in the delivery room: updated information. J Pediatr. 2011 Feb;158(2 suppl):e5e7.CrossRefGoogle ScholarPubMed

Hellstrom-Westas, L, Forsblad, K, Sjors, G, et al. Earlier Apgar score increase in severely depressed term infants cared for in Swedish level III units with 40% oxygen versus 100% oxygen resuscitation strategies: a population-based register study. Pediatrics. 2006 Dec;118(6):e1798e1804.CrossRefGoogle ScholarPubMed

Rabi, Y, Rabi, D, Yee, W. Room air resuscitation of the depressed newborn: a systematic review and meta-analysis. Resuscitation. 2007 Mar;72(3):353–63.CrossRefGoogle ScholarPubMed

Saugstad, OD, Ramji, S, Soll, RF, Vento, M. Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology. 2008;94(3):176–82.CrossRefGoogle ScholarPubMed

Tan, A, Schulze, A, O’Donnell, CP, Davis, PG. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst Rev. 2005;(2):CD002273.Google Scholar

Perlman, JM, Wyllie, J, Kattwinkel, J, et al. Part 11: neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Circulation. 2010 Oct 19;122(16 suppl 2):S516S538.CrossRefGoogle ScholarPubMed

Wyllie, J, Perlman, JM, Kattwinkel, J, et al. Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation. 2010 Oct;81 (suppl 1):e260e287.CrossRefGoogle ScholarPubMed

Vento, M, Moro, M, Escrig, R, et al. Preterm resuscitation with low oxygen causes less oxidative stress, inflammation, and chronic lung disease. Pediatrics. 2009 Sep;124(3):e439e449.CrossRefGoogle ScholarPubMed

O’Donnell, CP, Kamlin, CO, Davis, PG, Morley, CJ. Crying and breathing by extremely preterm infants immediately after birth. J Pediatr. 2010 May;156(5):846847.CrossRefGoogle ScholarPubMed

Escrig, R, Arruza, L, Izquierdo, I, et al. Achievement of targeted saturation values in extremely low gestational age neonates resuscitated with low or high oxygen concentrations: a prospective, randomized trial. Pediatrics. 2008 May;121(5):875881.CrossRefGoogle ScholarPubMed

Rabi, Y, Singhal, N, Nettel-Aguirre, A. Room-air versus oxygen administration for resuscitation of preterm infants: the ROAR study. Pediatrics. 2011 Aug;128(2):e374e381.CrossRefGoogle ScholarPubMed

Wang, CL, Anderson, C, Leone, TA, Rich, W, Govindaswami, B, Finer, NN. Resuscitation of preterm neonates by using room air or 100% oxygen. Pediatrics. 2008 Jun;121(6):10831089.CrossRefGoogle ScholarPubMed

Dawson, JA, Kamlin, CO, Vento, M, et al. Defining the reference range for oxygen saturation for infants after birth. Pediatrics. 2010 Jun;125(6):e1340e1347.CrossRefGoogle ScholarPubMed

Lakshminrusimha, S, Steinhorn, RH, Wedgwood, S, et al. Pulmonary hemodynamics and vascular reactivity in asphyxiated term lambs resuscitated with 21 and 100% oxygen. J Appl Physiol. 2011 Nov;111(5):14411447.CrossRefGoogle ScholarPubMed

Teitel, DF, Iwamoto, HS, Rudolph, AM. Changes in the pulmonary circulation during birth-related events. Pediatr Res. 1990 Apr;27(4 Pt 1):372378.CrossRefGoogle ScholarPubMed

Schmolzer, GM, Dawson, JA, Kamlin, CO, O’Donnell, CP, Morley, CJ, Davis, PG. Airway obstruction and gas leak during mask ventilation of preterm infants in the delivery room. Arch Dis Child Fetal Neonatal Ed. 2011 Jul;96(4):F254F257.CrossRefGoogle ScholarPubMed

van Vonderen, JJ, Hooper, SB, Hummler, HD, Lopriore, E, te Pas, AB. Effects of a sustained inflation in preterm infants at birth. J Pediatr. 2014 Nov;165(5):903908.CrossRefGoogle ScholarPubMed

Tomori, Z, Benacka, R, Donic, V. Mechanisms and clinicophysiological implications of the sniff- and gasp-like aspiration reflex. Respir Physiol. 1998 Oct;114(1):8398.CrossRefGoogle ScholarPubMed

Tomori, Z, Donic, V, Benacka, R, Jakus, J, Gresova, S. Resuscitation and auto resuscitation by airway reflexes in animals. Cough. 2013;9(1):21.CrossRefGoogle ScholarPubMed

Capasso, L, Capasso, A, Raimondi, F, Vendemmia, M, Araimo, G, Paludetto, R. A randomized trial comparing oxygen delivery on intermittent positive pressure with nasal cannulae versus facial mask in neonatal primary resuscitation. Acta Paediatr. 2005 Feb;94(2):197200.CrossRefGoogle ScholarPubMed

Segedin, E, Torrie, J, Anderson, B. Nasal airway versus oral route for infant resuscitation. Lancet. 1995 Aug 5;346(8971):382.CrossRefGoogle ScholarPubMed

Kamlin, CO, Schilleman, K, Dawson, JA, et al. Mask versus nasal tube for stabilization of preterm infants at birth: a randomized controlled trial. Pediatrics. 2013 Aug;132(2):e381e388.CrossRefGoogle ScholarPubMed

Schilleman, K, Siew, ML, Lopriore, E, Morley, CJ, Walther, FJ, te Pas, AB. Auditing resuscitation of preterm infants at birth by recording video and physiological parameters. Resuscitation. 2012 Feb 6.

van Vonderen, JJ, Roest, AA, Siew, ML, Walther, FJ, Hooper, SB, te Pas, AB. Measuring physiological changes during the transition to life after birth. Neonatology. 2014 Feb 6;105(3):230242.CrossRefGoogle ScholarPubMed

Greenough, A, Dimitriou, G, Prendergast, M, Milner, AD. Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev. 2008;(1):CD000456.

Schmolzer, GM, te Pas, AB, Davis, PG, Morley, CJ. Reducing lung injury during neonatal resuscitation of preterm infants. J Pediatr. 2008 Dec;153(6):741745.CrossRefGoogle ScholarPubMed

Finer, NN, Horbar, JD, Carpenter, JH. Cardiopulmonary resuscitation in the very low birth weight infant: the Vermont Oxford Network experience. Pediatrics. 1999 Sep;104(3 Pt 1):428434.CrossRefGoogle ScholarPubMed

Shah, PS. Extensive cardiopulmonary resuscitation for VLBW and ELBW infants: a systematic review and meta-analyses. J Perinatol. 2009 Oct;29(10):655661.CrossRefGoogle ScholarPubMed

DeMauro, SB, Roberts, RS, Davis, P, Alvaro, R, Bairam, A, Schmidt, B. Impact of delivery room resuscitation on outcomes up to 18 months in very low birth weight infants. J Pediatr. 2011 Oct;159(4):546550.CrossRefGoogle ScholarPubMed

Vyas, H, Milner, AD, Hopkins, IE. Intrathoracic pressure and volume changes during the spontaneous onset of respiration in babies born by cesarean section and by vaginal delivery. J Pediatr. 1981 Nov;99(5):787791.CrossRefGoogle ScholarPubMed

Polglase, GR, Miller, SL, Barton, SK, et al. Initiation of resuscitation with high tidal volumes causes cerebral hemodynamic disturbance, brain inflammation and injury in preterm lambs. PLoS One. 2012;7(6):e39535.CrossRefGoogle ScholarPubMed

Hillman, NH, Moss, TJ, Kallapur, SG, et al. Brief, large tidal volume ventilation initiates lung injury and a systemic response in fetal sheep. Am J Respir Crit Care Med. 2007 Sep 15;176(6):575581.CrossRefGoogle Scholar

Hillman, NH, Polglase, GR, Pillow, JJ, Saito, M, Kallapur, SG, Jobe, AH. Inflammation and lung maturation from stretch injury in preterm fetal sheep. Am J Physiol Lung Cell Mol Physiol. 2011 Feb;300(2):L232L241.CrossRefGoogle ScholarPubMed

Ingimarsson, J, Bjorklund, LJ, Curstedt, T, et al. Incomplete protection by prophylactic surfactant against the adverse effects of large lung inflations at birth in immature lambs. Intensive Care Med. 2004 Jul;30(7):14461453.CrossRefGoogle ScholarPubMed

Bjorklund, LJ, Vilstrup, CT, Larsson, A, Svenningsen, NW, Werner, O. Changes in lung volume and static expiratory pressure-volume diagram after surfactant rescue treatment of neonates with established respiratory distress syndrome. Am J Respir Crit Care Med. 1996 Oct;154(4 Pt 1):918923.CrossRefGoogle ScholarPubMed

Vilstrup, CT, Bjorklund, LJ, Werner, O, Larsson, A. Lung volumes and pressure-volume relations of the respiratory system in small ventilated neonates with severe respiratory distress syndrome. Pediatr Res. 1996 Jan;39(1):127133.CrossRefGoogle ScholarPubMed

Stenson, BJ, Boyle, DW, Szyld, EG. Initial ventilation strategies during newborn resuscitation. Clin Perinatol. 2006 Mar;33(1):6582.CrossRefGoogle ScholarPubMed

Wallace, MJ, Probyn, ME, Zahra, VA, et al. Early biomarkers and potential mediators of ventilation-induced lung injury in very preterm lambs. Respir Res. 2009;10:19.CrossRefGoogle ScholarPubMed

Bach, KP, Kuschel, CA, Hooper, SB, et al. High bias gas flows increase lung injury in the ventilated preterm lamb. PLoS One. 2012;7(10):e47044.CrossRefGoogle ScholarPubMed

Dawson, JA, Schmolzer, GM, Kamlin, CO, et al. Oxygenation with T-piece versus self-inflating bag for ventilation of extremely preterm infants at birth: a randomized controlled trial. J Pediatr. 2011 Jun;158(6):912918.CrossRefGoogle ScholarPubMed

van Vonderen, JJ, Hooper, SB, Krabbe, VB, Siew, ML, te Pas, AB. Monitoring tidal volumes in preterm infants at birth: mask versus endotracheal ventilation. Arch Dis Child Fetal Neonatal Ed. 2015 Jan;100(1):F43F46.CrossRefGoogle ScholarPubMed

Clark, RH, Gerstmann, DR, Jobe, AH, Moffitt, ST, Slutsky, AS, Yoder, BA. Lung injury in neonates: causes, strategies for prevention, and long-term consequences. J Pediatr. 2001 Oct;139(4):478486.CrossRefGoogle ScholarPubMed

Michna, J, Jobe, AH, Ikegami, M. Positive end-expiratory pressure preserves surfactant function in preterm lambs. Am J Respir Crit Care Med. 1999 Aug;160(2):634639.CrossRefGoogle ScholarPubMed

Probyn, ME, Hooper, SB, Dargaville, PA, et al. Positive end expiratory pressure during resuscitation of premature lambs rapidly improves blood gases without adversely affecting arterial pressure. Pediatr Res. 2004 Aug;56(2):198204.CrossRefGoogle Scholar

Crossley, KJ, Morley, CJ, Allison, BJ, et al. Blood gases and pulmonary blood flow during resuscitation of very preterm lambs treated with antenatal betamethasone and/or Curosurf: effect of positive end-expiratory pressure. Pediatr Res. 2007 Jul;62(1):3742.CrossRefGoogle ScholarPubMed

Polglase, GR, Hooper, SB, Gill, AW, et al. Cardiovascular and pulmonary consequences of airway recruitment in preterm lambs. J Appl Physiol (1985). 2009 Apr;106(4):13471355.CrossRefGoogle ScholarPubMed

Kluckow, M, Evans, N. Relationship between blood pressure and cardiac output in preterm infants requiring mechanical ventilation. J Pediatr. 1996 Oct;129(4):506512.CrossRefGoogle ScholarPubMed

Polglase, GR, Moss, TJ, Nitsos, I, Allison, BJ, Pillow, JJ, Hooper, SB. Differential effect of recruitment maneuvres on pulmonary blood flow and oxygenation during HFOV in preterm lambs. J Appl Physiol (1985). 2008 Aug;105(2):603610.CrossRefGoogle ScholarPubMed

Mirro, R, Busija, D, Green, R, Leffler, C. Relationship between mean airway pressure, cardiac output, and organ blood flow with normal and decreased respiratory compliance. J Pediatr. 1987 Jul;111(1):101106.CrossRefGoogle ScholarPubMed

Biondi, JW, Schulman, DS, Soufer, R, et al. The effect of incremental positive end-expiratory pressure on right ventricular hemodynamics and ejection fraction. Anesth Analg. 1988 Feb;67(2):144151.CrossRefGoogle ScholarPubMed

de Waal, KA, Evans, N, Osborn, DA, Kluckow, M. Cardiorespiratory effects of changes in end expiratory pressure in ventilated newborns. Arch Dis Child Fetal Neonatal Ed. 2007 Nov;92(6):F444F448.CrossRefGoogle ScholarPubMed

Kluckow, M, Evans, N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000 May;82(3):F188F194.CrossRefGoogle ScholarPubMed

Miletin, J, Dempsey, EM. Low superior vena cava flow on day 1 and adverse outcome in the very low birthweight infant. Arch Dis Child Fetal Neonatal Ed. 2008 Sep;93(5):F368F371.CrossRefGoogle ScholarPubMed

Polglase, GR, Hillman, NH, Pillow, JJ, et al. Positive end-expiratory pressure and tidal volume during initial ventilation of preterm lambs. Pediatr Res. 2008 Nov;64(5):517522.CrossRefGoogle ScholarPubMed

Chiumello, D, Pristine, G, Slutsky, AS. Mechanical ventilation affects local and systemic cytokines in an animal model of acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999 Jul;160(1):109116.CrossRefGoogle Scholar

Quilez, ME, Fuster, G, Villar, J, et al. Injurious mechanical ventilation affects neuronal activation in ventilated rats. Crit Care. 2011;15(3):R124.CrossRefGoogle ScholarPubMed

Bohrer, B, Silveira, RC, Neto, EC, Procianoy, RS. Mechanical ventilation of newborns infant changes in plasma pro- and anti-inflammatory cytokines. J Pediatr. 2010 Jan;156(1):1619.CrossRefGoogle ScholarPubMed

Noori, S, McCoy, M, Anderson, MP, Ramji, F, Seri, I. Changes in cardiac function and cerebral blood flow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr. 2014 Feb;164(2):264270.CrossRefGoogle ScholarPubMed

Threlkeld, SW, Lynch, JL, Lynch, KM, Sadowska, GB, Banks, WA, Stonestreet, BS. Ovine proinflammatory cytokines cross the murine blood-brain barrier by a common saturable transport mechanism. Neuroimmunomodulation. 2010;17(6):405410.CrossRefGoogle ScholarPubMed

Polglase, GR, Nitsos, I, Baburamani, AA, et al. Inflammation in utero exacerbates ventilation-induced brain injury in preterm lambs. J Appl Physiol (1985). 2012 Feb;112(3):481489.CrossRefGoogle ScholarPubMed

Viscardi, RM, Muhumuza, CK, Rodriguez, A, et al. Inflammatory markers in intrauterine and fetal blood and cerebrospinal fluid compartments are associated with adverse pulmonary and neurologic outcomes in preterm infants. Pediatr Res. 2004 Jun;55(6):10091017.CrossRefGoogle ScholarPubMed

Volpe, JJ. Postnatal sepsis, necrotizing entercolitis, and the critical role of systemic inflammation in white matter injury in premature infants. J Pediatr. 2008 Aug;153(2):160163.CrossRefGoogle ScholarPubMed

Yanowitz, TD, Jordan, JA, Gilmour, CH, et al. Hemodynamic disturbances in premature infants born after chorioamnionitis: association with cord blood cytokine concentrations. Pediatr Res. 2002 Mar;51(3):310316.CrossRefGoogle ScholarPubMed

Loeliger, M, Inder, T, Cain, S, et al. Cerebral outcomes in a preterm baboon model of early versus delayed nasal continuous positive airway pressure. Pediatrics. 2006 Oct;118(4):16401653.CrossRefGoogle Scholar

Albertine, KH. Brain injury in chronically ventilated preterm neonates: collateral damage related to ventilation strategy. Clin Perinatol. 2012 Sep;39(3):727740.CrossRefGoogle ScholarPubMed

Saugstad, OD, Aune, D, Aguar, M, Kapadia, V, Finer, N, Vento, M. Systematic review and meta-analysis of optimal initial fraction of oxygen levels in the delivery room at </=32 weeks. Acta Paediatr. 2014 Jul;103(7):744751.Google ScholarPubMed

Frank, L, Sosenko, IR. Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely born infant. J Pediatr. 1987 Jan;110(1):914.CrossRefGoogle ScholarPubMed

Torbati, D, Tan, GH, Smith, S, et al. Multiple-organ effect of normobaric hyperoxia in neonatal rats. J Crit Care. 2006 Mar;21(1):8593.CrossRefGoogle ScholarPubMed

Siew, ML, te Pas, AB, Wallace, MJ, et al. Positive end-expiratory pressure enhances development of a functional residual capacity in preterm rabbits ventilated from birth. J Appl Physiol. 2009 May;106(5):14871493.CrossRefGoogle ScholarPubMed

What are the factors that enable to baby to initiate respiration immediately postpartum?

A number of factors have been implicated in the initiation of postnatal breathing: decreased oxygen concentration, increased carbon dioxide concentration and a decrease in pH, all of which may stimulate fetal aortic and carotid chemoreceptors, triggering the respiratory center in the medulla to initiate respiration.

What is the stimulus for the baby's first breath?

After delivery, a healthy term baby usually takes its first breath within 60–90 seconds of clamping or obstructing the umbilical cord. Separation of the placenta and clamping of the cord leads to the onset of hypoxia, which is initially a major stimulant to start respiration.

What are the factors that speed up the dilation of the cervix?

Getting up and moving around may help speed dilation by increasing blood flow. Walking around the room, doing simple movements in bed or chair, or even changing positions may encourage dilation. This is because the weight of the baby applies pressure to the cervix.

What are the factors that affect the onset of labor?

Factors Affecting Labor. At least five factors affect the process of labor and birth. These are easily remembered as the five Ps: passenger (fetus and placenta), passageway (birth canal), powers (contractions), position of the mother, and psychologic response.