Welches phänomen kann bei passagierflugzeugen beobachtet werden

Durch die Bionik, das Lernen aus der Biologie, ist das Fliegen für den Menschen erst möglich geworden. Die Natur könnte auch den Schlüssel für die Zukunft der Luftfahrt liefern.

«Airbus Concept Cabin» – ein Flugzeug der Zukunft mit bionischen Strukturelementen. (Bild: Airbus)

Spektakulär sieht der Entwurf aus, wie sich Airbus mit dem «Concept Plane» ein Flugzeug für das Jahr 2050 vorstellt. Keine gleichförmige Struktur mehr, die mit Metallhaut oder Kunststoff ummantelt ist, sondern ein skelettähnliches Gerüst, unterschiedlich stark ausgeprägt, je nach lokal auftretender Belastung. Dazwischen eine transparente Aussenhaut, die den Passagieren den Blick auf Himmel und Erde ermöglicht. Abgeschaut haben die Ingenieure diese Bauweise der Natur.

  1. Startseite
  2. Technik
  3. Fachbereiche
  4. Luftfahrt

Korona-Entladungen sind mögliche Vorboten von Blitzeinschlägen. US-Forscher fanden heraus, dass sich Flügel als erdfreie Objekte anders verhalten als erwartet – das könnte sehr nützlich sein.

Forscher am MIT haben untersucht, wie sich das Risiko von Blitzeinschlägen in Flugzeuge verringern lässt.

Foto: panthermedia.net/rhphoto

Seit Jahrhunderten kennen Seeleute das Elmsfeuer als Vorbote eines Gewitters. Bei elektrischen Feldstärken von mehr als 100 kV/m kommt es zu kontinuierlichen Entladungen an hohen Gegenständen wie Schiffsmasten. Auch Piloten beobachten das Phänomen: Durchquert ihr Flugzeug eine Gewitterfront, bilden sich an den Enden der Tragflächen oder an der Frontscheibe solche Korona-Entladungen. Sie gelten als Vorboten eines Blitzeinschlags. Zwar sind Flugzeuge als Faraday’sche Käfige gut geschützt – auch die Bordelektronik wehrt Überspannungen meist erfolgreich ab – und dennoch kann es zum Ausfall von Geräten kommen.

Bisher wusste man, dass sich eine Korona-Entladung bei Wind verstärken kann. Nun haben Luft- und Raumfahrtingenieure am Massachusetts Institute of Technology (MIT) herausgefunden, dass Luftströmungen bei nicht geerdeten Objekten wie Flugzeugen einen gegenteiligen Effekt haben. Die Korona-Entladung wird umso schwächer ist, je stärker der Wind ist.

Die Gewitterwolke physikalisch betrachtet 

Zum Hintergrund: Innerhalb einer Gewitterwolke kann Reibung dazu führen, dass zusätzliche Elektronen erzeugt werden. Ein Feld entsteht, das bis zum Boden reichen kann. Wenn dieses Feld stark genug ist, kann es umgebende Luftmoleküle ionisieren und neutrale Luft in ein geladenes Gas oder Plasma verwandeln. Dieser Prozess tritt am häufigsten um scharfe, leitende Objekte wie Flügelspitzen auf, da diese spitzen Strukturen dazu neigen, das elektrische Feld zu bündeln.

Sobald sich ein Plasma gebildet hat, beginnen Moleküle innerhalb des Plasmas durch den Prozess der Korona-Entladung zu glühen, wobei überschüssige Elektronen im elektrischen Feld gegen die Moleküle stoßen und sie in angeregte Zustände versetzen. Um wieder in den Grundzustand zu kommen, senden die Moleküle ein Photon aus, und zwar mit einer Wellenlänge, die für Sauerstoff und Stickstoff dem charakteristischen bläulichen Leuchten des Elmsfeuers entspricht.

In früheren Laborexperimenten fanden die Wissenschaftler heraus, dass sich dieses Leuchten und die Energie einer Korona-Entladung in Gegenwart von Wind verstärken. Eine starke Böe kann positiv geladenen Ionen wegblasen, welche das elektrische Feld lokal abschirmen und seine Wirkung verringern. Diese Versuche wurden meist mit elektrisch geerdeten Strukturen durchgeführt. Das MIT-Team fragte sich nun, ob dies auch für nicht geerdete Strukturen wie Flügel eines Flugzeugs gilt.

Experimente im Windkanal

Um ihre Hypothese zu testen, bauten die Ingenieure eine einfache Flügelstruktur aus Holz und wickelten ihr Konstrukt in Alufolie, damit das Modell elektrisch leitfähig wird. Anstatt ein elektrisches Umgebungsfeld wie bei Gewitter zu generieren, was recht aufwendig gewesen wäre, arbeiteten die Ingenieure mit einem alternativen Aufbau. Sie erzeugten die Korona-Entladung mit einem Metalldraht, der parallel zur Länge des Flügels verlief und mit einer Hochspannungsquelle zwischen Draht und Flügel verbunden wurde. Sie befestigten den Flügel an einem Sockel aus einem isolierenden Material, um ihn erdfrei zu machen. Der gesamte Aufbau wurde im Windkanal bei Windgeschwindigkeiten von bis zu 50 Metern pro Sekunde platziert. Außerdem veränderten die Forscher die Spannung am Draht. Alle Leuchterscheinungen wurden per Kamera erfasst. Ihr Ergebnis überrascht. Denn die Stärke der Korona-Entladung und die daraus resultierende Helligkeit nahm mit zunehmendem Wind ab – anders als bei geerdeten Strukturen.

Aus dem Labor in die Anwendung  

„Das Spannende an dieser Studie ist, dass wir bei dem Versuch tatsächlich entdeckt haben, dass die klassischen Theorien der Korona-Entladung im Wind nicht für Flugzeuge gelten, die von ihrer Umgebung elektrisch isoliert sind“, fast Carmen Guerra-Garcia zusammen. Sie ist Assistenzprofessorin für Luft- und Raumfahrt am MIT.

Das Projekt wurde zum Teil von Boeing finanziert, was Rückschlüsse auf die Praxisrelevanz erlaubt. Piloten versuchen immer, Gewitter zu umfliegen. Dafür stehen ihnen umfangreiche technische Hilfsmittel zur Verfügung. Gelingt ihnen das jedoch nicht, könnten weitere technische Maßnahmen helfen, das Risiko von Blitzeinschlägen zu minimieren. Gleichzeitig könnte auch der Luftstrom, den Flugzeuge erzeugen, dazu dienen, Korona-Entladungen zu kontrollieren. Die ersten Experimente erlauben hier noch keine detaillierten Rückschlüsse auf Flugzeuge; das Labormodell ist stark vereinfacht. Aus früheren Versuchen wissen die Forscher ebenfalls, dass man die Oberfläche eines Flugzeugs negativ laden könnte, um positive Ladungsträger zu neutralisieren und das Risiko von Blitzeinschlägen zu verringern.

Mehr zum Thema Flugzeuge

  • Aus für Legende Boeing 747
  • Abheben für alle: Airbus A320 mit dem Flugsimulator selbst steuern
  • Boeing stellt Prototypen der Kampfdrohne Loyal Wingman vor

Ein Beitrag von:

  • Michael van den Heuvel hat Chemie studiert. Unter anderem arbeitet er für Medscape, DocCheck, für die Universität München und für pharmazeutische Fachmagazine. Seit 2017 ist er selbstständiger Journalist und Gesellschafter von Content Qualitäten. Seine Themen: Chemie/physikalische Chemie, Energie, Umwelt, KI, Medizin/Medizintechnik.

Empfehlung der Redaktion

Technik Kategorien im Überblick

  • Antriebstechnik
  • 3D-Druck
  • Architektur
  • Automation
  • Bau
  • Biotechnologie
  • CAD-CAM
  • Chemie
  • Druckindustrie
  • Elektromobilität
  • Elektronik
  • Energie
  • Fahrzeugbau
  • Gebäudetechnik
  • Industrie 4.0
  • IT & TK
  • Landtechnik
  • Logistik
  • Luftfahrt
  • Maschinenbau
  • Mechatronik
  • Medien
  • Medizin
  • Messtechnik
  • Mikroelektronik
  • Nanotechnologie
  • Optoelektronik
  • Produktion
  • Produkte
  • Raumfahrt
  • Robotik
  • Rohstoffe
  • Schiffbau
  • Smart Home
  • Textilindustrie
  • Umwelt
  • Verfahrenstechnik
  • Verkehr
  • Werkstoffe

Top 5 Luftfahrt

Zu unseren Newslettern anmelden

Das Wichtigste immer im Blick: Mit unseren beiden Newslettern verpassen Sie keine News mehr aus der schönen neuen Technikwelt und erhalten Karrieretipps rund um Jobsuche & Bewerbung. Sie begeistert ein Thema mehr als das andere? Dann wählen Sie einfach Ihren kostenfreien Favoriten.

Auch auf dieser Seite werden Cookies verwendet. Wir können damit die Seitennutzung auswerten, um nutzungsbasiert redaktionelle Inhalte und Werbung anzuzeigen. Das ist für uns wichtig, denn unser Angebot finanziert sich über Werbung. Die Nutzung der Seite gilt als Zustimmung zur Cookie-Nutzung. Weitere Infos

Kann man Wirbelschleppen hören?

Wirbelschleppen können unter bestimmten Voraussetzungen hörbar sein. Vor allem an windstillen Tagen können Wirbelschleppen hinter schweren Flugzeugen als dumpfes Brausen und Zischen wahrgenommen werden. Stabile Wirbelschleppen sind als breitbandiges tieffrequentes Geräusch hörbar.

Wann entstehen Wirbelschleppen?

Entstehung. Wirbelschleppen sind eine Begleiterscheinung des dynamischen Auftriebs. Sie treten unvermeidlich bei jedem Flugzeug auf, da Tragflächen nur dann mit Hilfe des Luftstroms Auftrieb erzeugen können, wenn sie Luft nach unten beschleunigen.

Wie nennt man den Effekt dank dem das Flugzeug fliegen kann?

Flugzeuge fliegen dank aerodynamischem Auftrieb. Im Geradeausflug ist diese Kraft exakt gleich gross wie das Gewicht des Flugzeugs. Oft liest man in Lehrbüchern, das Flügelprofil eines Flugzeugs sorge für den Auftrieb.

zusammenhängende Posts

Toplist

Neuester Beitrag

Stichworte